Biological Engineering - History

History

Thus biological engineering is a science-based discipline founded upon the biological sciences in the same way that chemical engineering, electrical engineering, and mechanical engineering are based upon chemistry, electricity and magnetism, and classical mechanics, respectively.

Biological engineering can be differentiated from its roots of pure biology or classical engineering in the following way. Biological studies often follow a reductionist approach in viewing a system on its smallest possible scale which naturally leads toward tools such as functional genomics. Engineering approaches, using classical design perspectives, are constructionist, building new devices, approaches, and technologies from component concepts. Biological engineering utilizes both kinds of methods in concert, relying on reductionist approaches to identify, understand, and organize the fundamental units which are then integrated to generate something new. In addition, because it is an engineering discipline, biological engineering is fundamentally concerned with not just the basic science, but the practical application of the scientific knowledge to solve real-world problems in a cost-effective way.

Although engineered biological systems have been used to manipulate information, construct materials, process chemicals, produce energy, provide food, and help maintain or enhance human health and our environment, our ability to quickly and reliably engineer biological systems that behave as expected is at present less well developed than our mastery over mechanical and electrical systems.

ABET, the U.S.-based accreditation board for engineering B.S. programs, makes a distinction between Biomedical engineering and Biological engineering; however, the differences are quite small. University of California, San Diego (UCSD) has a bioengineering program that is considered to be among the world's best undergraduate programs. Biomedical engineers must have life science courses that include human physiology and have experience in performing measurements on living systems while biological engineers must have life science courses (which may or may not include physiology) and experience in making measurements not specifically on living systems. Foundational engineering courses are often the same and include thermodynamics, fluid and mechanical dynamics, kinetics, electronics, and materials properties. According to Prof. Doug Lauffenberger of MIT, Biological engineering (like biotechnology) has a broader base which applies engineering principles to an enormous range of size and complexities of systems ranging from the molecular level - molecular biology, biochemistry, microbiology, pharmacology, protein chemistry, cytology, immunology, neurobiology and neuroscience (often but not always using biological substances) - to cellular and tissue-based methods (including devices and sensors), whole macroscopic organisms (plants, animals), and up increasing length scales to whole ecosystems.

The word bioengineering was coined by British scientist and broadcaster Heinz Wolff in 1954. The term bioengineering is also used to describe the use of vegetation in civil engineering construction. The term bioengineering may also be applied to environmental modifications such as surface soil protection, slope stabilisation, watercourse and shoreline protection, windbreaks, vegetation barriers including noise barriers and visual screens, and the ecological enhancement of an area. The first biological engineering program was created at Mississippi State University in 1967, making it the first biological engineering curriculum in the United States. More recent programs have been launched at MIT and Utah State University.

Biological Engineers or bioengineers are engineers who use the principles of biology and the tools of engineering to create usable, tangible, economically viable products. Biological engineering employs knowledge and expertise from a number of pure and applied sciences, such as mass and heat transfer, kinetics, biocatalysts, biomechanics, bioinformatics, separation and purification processes, bioreactor design, surface science, fluid mechanics, thermodynamics, and polymer science. It is used in the design of medical devices, diagnostic equipment, biocompatible materials, renewable bioenergy, ecological engineering, and other areas that improve the living standards of societies.

In general, biological engineers attempt to either mimic biological systems to create products or modify and control biological systems so that they can replace, augment, or sustain chemical and mechanical processes. Bioengineers can apply their expertise to other applications of engineering and biotechnology, including genetic modification of plants and microorganisms, bioprocess engineering, and biocatalysis.

Because other engineering disciplines also address living organisms (e.g., prosthetics in mechanical engineering), the term biological engineering can be applied more broadly to include agricultural engineering and biotechnology. In fact, many old agricultural engineering departments in universities over the world have rebranded themselves as agricultural and biological engineering or agricultural and biosystems engineering. Biological engineering is also called bioengineering by some colleges and Biomedical engineering is called Bioengineering by others, and is a rapidly developing field with fluid categorization. The Main Fields of Bioengineering may be categorised as:

  • Bioprocess engineering: Bioprocess design, Biocatalysis, Bioseparation, Bioinformatics, Bioenergy
  • Genetic engineering: Synthetic biology, Horizontal gene transfer.
  • Cellular engineering: Cell engineering, Tissue engineering, Metabolic engineering.
  • Biomedical engineering: Biomedical technology, Biomedical diagnostics, Biomedical therapy, Biomechanics, Biomaterials.
  • Biomimetics: The use of knowledge gained from reverse engineering evolved living systems to solve difficult design problems in artificial systems.

Read more about this topic:  Biological Engineering

Other articles related to "history":

History of Computing
... The history of computing is longer than the history of computing hardware and modern computing technology and includes the history of methods intended for pen and paper or for chalk and slate, with or without ...
Casino - History of Gambling Houses
... believed that gambling in some form or another has been seen in almost every society in history ... Greeks and Romans to Napoleon's France and Elizabethan England, much of history is filled with stories of entertainment based on games of chance ... In American history, early gambling establishments were known as saloons ...
Xia Dynasty - Modern Skepticism
... The Skeptical School of early Chinese history, started by Gu Jiegang in the 1920s, was the first group of scholars within China to seriously question the ... early Chinese history is a tale told and retold for generations, during which new elements were added to the front end" ...
Spain - History - Fall of Muslim Rule and Unification
... The breakup of Al-Andalus into the competing taifa kingdoms helped the long embattled Iberian Christian kingdoms gain the initiative ... The capture of the strategically central city of Toledo in 1085 marked a significant shift in the balance of power in favour of the Christian kingdoms ...
Voltaire - Works - Historical
... History of Charles XII, King of Sweden (1731) The Age of Louis XIV (1751) The Age of Louis XV (1746–1752) Annals of the Empire – Charlemagne, A.D ... Essay on the Manners of Nations (or 'Universal History') (1756) History of the Russian Empire Under Peter the Great (Vol ... II 1763) History of the Parliament of Paris (1769) ...

Famous quotes containing the word history:

    The history of philosophy is to a great extent that of a certain clash of human temperaments.
    William James (1842–1910)

    It’s not the sentiments of men which make history but their actions.
    Norman Mailer (b. 1923)

    Three million of such stones would be needed before the work was done. Three million stones of an average weight of 5,000 pounds, every stone cut precisely to fit into its destined place in the great pyramid. From the quarries they pulled the stones across the desert to the banks of the Nile. Never in the history of the world had so great a task been performed. Their faith gave them strength, and their joy gave them song.
    William Faulkner (1897–1962)