Genetics

Genetics (from Ancient Greek γενετικός genetikos, "genitive" and that from γένεσις genesis, "origin"), a discipline of biology, is the science of genes, heredity, and variation in living organisms.

Genetics deals with the molecular structure and function of genes, gene behavior in context of a cell or organism (e.g. dominance and epigenetics), patterns of inheritance from parent to offspring, and gene distribution, variation and change in populations, such as through Genome-Wide Association Studies. Given that genes are universal to living organisms, genetics can be applied to the study of all living systems, from viruses and bacteria, through plants and domestic animals, to humans (as in medical genetics).

The fact that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding. However, the modern science of genetics, which attempts to understand the process of inheritance, only began with the work of Gregor Mendel in the mid-19th century. Although he did not know the physical basis for heredity, Mendel observed that organisms inherit traits by way of discrete units of inheritance, which are now called genes.

Genes correspond to regions within DNA, a molecule composed of a chain of four different types of nucleotides—the sequence of these nucleotides is the genetic information organisms inherit. DNA naturally occurs in a double stranded form, with nucleotides on each strand complementary to each other. Each strand can act as a template for creating a new partner strand. This is the physical method for making copies of genes that can be inherited.

The sequence of nucleotides in a gene is translated by cells to produce a chain of amino acids, creating proteins—the order of amino acids in a protein corresponds to the order of nucleotides in the gene. This relationship between nucleotide sequence and amino acid sequence is known as the genetic code. The amino acids in a protein determine how it folds into a three-dimensional shape; this structure is, in turn, responsible for the protein's function. Proteins carry out almost all the functions needed for cells to live. A change to the DNA in a gene can change a protein's amino acids, changing its shape and function: this can have a dramatic effect in the cell and on the organism as a whole.

Although genetics plays a large role in the appearance and behavior of organisms, it is the combination of genetics with what an organism experiences that determines the ultimate outcome. For example, while genes play a role in determining an organism's size, the nutrition and health it experiences after inception also have a large effect.

Read more about Genetics:  History

Other articles related to "genetics, genetic":

Giuseppe Sermonti - Biography - Early Life and Career
... in Rome, graduated in agriculture and genetics, he entered the Superior Institute of Health in 1950, founding a department of Microbiological Genetics ... He became professor of genetics at the University of Camerino, then at the University of Palermo in 1965, and finally moved to the University of Perugia in 1970, where he is ... He is the discoverer of the genetic parasexual recombination in antibiotic-producing Penicillium and Streptomyces ...
Personalized Medicine - Background
... Advances in medical genetics and human genetics have enabled a more detailed understanding of the impact of genetics in disease ... single nucleotide polymorphisms (SNPs) that account for some of the genetic variability between individuals, and made possible the use of genome-wide ... It is hoped that recent advancements in the genetic etiologies of common diseases will improve pharmaceutical development ...
Management Of Baldness - Research - Genetics
... at the University of Bonn announced they have found the genetic basis of two distinct forms of inherited hair loss, opening a broad path to treatments for baldness ... and they are now attempting to gather more genetic and biological data ...
Genetics - Research and Technology - DNA Sequencing and Genomics
... One of the most fundamental technologies developed to study genetics, DNA sequencing allows researchers to determine the sequence of nucleotides in DNA fragments ... Developed in 1977 by Frederick Sanger and coworkers, chain-termination sequencing is now routinely used to sequence DNA fragments ...