Uniform Space - Topology of Uniform Spaces - Uniformizable Spaces

Uniformizable Spaces

A topological space is called uniformizable if there is a uniform structure compatible with the topology.

Every uniformizable space is a completely regular topological space. Moreover, for a uniformizable space X the following are equivalent:

  • X is a Kolmogorov space
  • X is a Hausdorff space
  • X is a Tychonoff space
  • for any compatible uniform structure, the intersection of all entourages is the diagonal {(x, x) : x in X}.

Some authors (e.g. Engelking) add this last condition directly in the definition of a uniformizable space.

The topology of a uniformizable space is always a symmetric topology; that is, the space is an R0-space.

Conversely, each completely regular space is uniformizable. A uniformity compatible with the topology of a completely regular space X can be defined as the coarsest uniformity which makes all continuous real-valued functions on X uniformly continuous. A fundamental system of entourages for this uniformity is provided by all finite intersections of sets (f × f)-1(V), where f is a continuous real-valued function on X and V is an entourage of the uniform space R. This uniformity defines a topology, which is clearly coarser than the original topology of X; that it is also finer than the original topology (hence coincides with it) is a simple consequence of complete regularity: for any xX and a neighbourhood V of x, there is a continuous real-valued function f with f(x)=0 and equal to 1 in the complement of V.

In particular, a compact Hausdorff space is uniformizable. In fact, for a compact Hausdorff space X the set of all neighbourhoods of the diagonal in X × X form the unique uniformity compatible with the topology.

A Hausdorff uniform space is metrizable if its uniformity can be defined by a countable family of pseudometrics. Indeed, as discussed above, such a uniformity can be defined by a single pseudometric, which is necessarily a metric if the space is Hausdorff. In particular, if the topology of a vector space is Hausdorff and definable by a countable family of seminorms, it is metrizable.

Read more about this topic:  Uniform Space, Topology of Uniform Spaces

Famous quotes containing the word spaces:

    Deep down, the US, with its space, its technological refinement, its bluff good conscience, even in those spaces which it opens up for simulation, is the only remaining primitive society.
    Jean Baudrillard (b. 1929)