Presentation of A Group - Geometric Group Theory

Geometric Group Theory

A presentation of a group determines a geometry, in the sense of geometric group theory: one has the Cayley graph, which has a metric, called the word metric. These are also two resulting orders, the weak order and the Bruhat order, and corresponding Hasse diagrams. An important example is in the Coxeter groups.

Further, some properties of this graph (the coarse geometry) are intrinsic, meaning independent of choice of generators.

Read more about this topic:  Presentation Of A Group

Famous quotes containing the words geometric, group and/or theory:

    New York ... is a city of geometric heights, a petrified desert of grids and lattices, an inferno of greenish abstraction under a flat sky, a real Metropolis from which man is absent by his very accumulation.
    Roland Barthes (1915–1980)

    Remember that the peer group is important to young adolescents, and there’s nothing wrong with that. Parents are often just as important, however. Don’t give up on the idea that you can make a difference.
    —The Lions Clubs International and the Quest Nation. The Surprising Years, I, ch.5 (1985)

    No theory is good unless it permits, not rest, but the greatest work. No theory is good except on condition that one use it to go on beyond.
    André Gide (1869–1951)