Presentation Of A Group
In mathematics, one method of defining a group is by a presentation. One specifies a set S of generators so that every element of the group can be written as a product of powers of some of these generators, and a set R of relations among those generators. We then say G has presentation
Informally, G has the above presentation if it is the "freest group" generated by S subject only to the relations R. Formally, the group G is said to have the above presentation if it is isomorphic to the quotient of a free group on S by the normal subgroup generated by the relations R.
As a simple example, the cyclic group of order n has the presentation
where 1 is the group identity. This may be written equivalently as
since terms that don't include an equals sign are taken to be equal to the group identity. Such terms are called relators, distinguishing them from the relations that include an equals sign.
Every group has a presentation, and in fact many different presentations; a presentation is often the most compact way of describing the structure of the group.
A closely related but different concept is that of an absolute presentation of a group.
Read more about Presentation Of A Group: Background, Definition, Some Theorems, Constructions, Deficiency, Geometric Group Theory
Famous quotes containing the words presentation of, presentation and/or group:
“He uses his folly like a stalking-horse, and under the presentation of that he shoots his wit.”
—William Shakespeare (15641616)
“He uses his folly like a stalking-horse, and under the presentation of that he shoots his wit.”
—William Shakespeare (15641616)
“Its important to remember that feminism is no longer a group of organizations or leaders. Its the expectations that parents have for their daughters, and their sons, too. Its the way we talk about and treat one another. Its who makes the money and who makes the compromises and who makes the dinner. Its a state of mind. Its the way we live now.”
—Anna Quindlen (20th century)