Limit Superior and Limit Inferior - The Case of Sequences of Real Numbers

The Case of Sequences of Real Numbers

In mathematical analysis, limit superior and limit inferior are important tools for studying sequences of real numbers. Since the supremum and infimum of an unbounded set of real numbers may not exist (the reals are not a complete lattice), it is convenient to consider sequences in the affinely extended real number system: we add the positive and negative infinities to the real line to give the complete totally ordered set, which is a complete lattice.

Read more about this topic:  Limit Superior And Limit Inferior

Famous quotes containing the words case, real and/or numbers:

    In all unmerciful actions, the worst of men pay this compliment at least to humanity, as to endeavour to wear as much of the appearance of it, as the case will well let them.
    Laurence Sterne (1713–1768)

    The real charm of the United States is that it is the only comic country ever heard of.
    —H.L. (Henry Lewis)

    ... there are persons who seem to have overcome obstacles and by character and perseverance to have risen to the top. But we have no record of the numbers of able persons who fall by the wayside, persons who, with enough encouragement and opportunity, might make great contributions.
    Mary Barnett Gilson (1877–?)