Hyperspectral imaging, like other spectral imaging, collects and processes information from across the electromagnetic spectrum. Much as the human eye sees visible light in three bands (red, green, and blue), spectral imaging divides the spectrum into many more bands. This technique of dividing images into bands can be extended beyond the visible.
Engineers build sensors and processing systems to provide such capability for application in agriculture, mineralogy, physics, and surveillance. Hyperspectral sensors look at objects using a vast portion of the electromagnetic spectrum. Certain objects leave unique 'fingerprints' across the electromagnetic spectrum. These 'fingerprints' are known as spectral signatures and enable identification of the materials that make up a scanned object. For example, a spectral signature for oil helps mineralogists find new oil fields.
Read more about Hyperspectral Imaging: Acquisition and Analysis, Different Hyperspectral Imaging Technologies, Differences Between Hyperspectral and Multispectral Imaging, Applications, Advantages and Disadvantages