Evolutionary History of Plants - Evolution of Morphology - Xylem


Further information: Xylem

To photosynthesise, plants must absorb CO2 from the atmosphere. However, this comes at a price: while stomata are open to allow CO2 to enter, water can evaporate. Water is lost much faster than CO2 is absorbed, so plants need to replace it, and have developed systems to transport water from the moist soil to the site of photosynthesis. Early plants sucked water between the walls of their cells, then evolved the ability to control water loss (and CO2 acquisition) through the use of a waterproof cuticle perforated by stomata. Specialised water transport tissues soon evolved in the form of hydroids, tracheids, then secondary xylem, followed by an endodermis and ultimately vessels.

The high CO2 levels of Silurian-Devonian times, when plants were first colonising land, meant that the need for water was relatively low. As CO2 was withdrawn from the atmosphere by plants, more water was lost in its capture, and more elegant transport mechanisms evolved. As water transport mechanisms, and waterproof cuticles, evolved, plants could survive without being continually covered by a film of water. This transition from poikilohydry to homoiohydry opened up new potential for colonisation. Plants then needed a robust internal structure that contained long narrow channels for transporting water from the soil to all the different parts of the above-soil plant, especially to the parts where photosynthesis occurred.

During the Silurian, CO2 was readily available, so little water needed to be expended to acquire it. By the end of the Carboniferous, when CO2 levels had lowered to something approaching today's, around 17 times more water was lost per unit of CO2 uptake. However, even in these "easy" early days, water was at a premium, and had to be transported to parts of the plant from the wet soil to avoid desiccation. This early water transport took advantage of the cohesion-tension mechanism inherent in water. Water has a tendency to diffuse to areas that are drier, and this process is accelerated when water can be wicked along a fabric with small spaces. In small passages, such as that between the plant cell walls (or in tracheids), a column of water behaves like rubber – when molecules evaporate from one end, they literally pull the molecules behind them along the channels. Therefore transpiration alone provided the driving force for water transport in early plants. However, without dedicated transport vessels, the cohesion-tension mechanism cannot transport water more than about 2 cm, severely limiting the size of the earliest plants. This process demands a steady supply of water from one end, to maintain the chains; to avoid exhausing it, plants developed a waterproof cuticle. Early cuticle may not have had pores but did not cover the entire plant surface, so that gas exchange could continue. However, dehydration at times was inevitable; early plants cope with this by having a lot of water stored between their cell walls, and when it comes to it sticking out the tough times by putting life "on hold" until more water is supplied.

To be free from the constraints of small size and constant moisture that the parenchymatic transport system inflicted, plants needed a more efficient water transport system. During the early Silurian, they developed specialized cells, which were lignified (or bore similar chemical compounds) to avoid implosion; this process coincided with cell death, allowing their innards to be emptied and water to be passed through them. These wider, dead, empty cells were a million times more conductive than the inter-cell method, giving the potential for transport over longer distances, and higher CO2 diffusion rates.

The earliest macrofossils to bear water-transport tubes are Silurian plants placed in the genus Cooksonia. The early Devonian pretracheophytes Aglaophyton and Horneophyton have structures very similar to the hydroids of modern mosses.

Plants continued to innovate new ways of reducing the resistance to flow within their cells, thereby increasing the efficiency of their water transport. Thickened bands on the walls of tubes are apparent from the early Silurian onwards are adaptations to ease the flow of water. Banded tubes, as well as tubes with pitted ornamentation on their walls, were lignified and, when they form single celled conduits, are referred to as tracheids. These, the "next generation" of transport cell design, have a more rigid structure than hydroids, preventing their collapse at higher levels of water tension. Tracheids may have a single evolutionary origin, possibly within the hornworts, uniting all tracheophytes (but they may have evolved more than once).

Water transport requires regulation, and dynamic control is provided by stomata. By adjusting the amount of gas exchange, they can restrict the amount of water lost through transpiration. This is an important role where water supply is not constant, and indeed stomata appear to have evolved before tracheids, being present in the non-vascular hornworts.

An endodermis probably evolved during the Silu-Devonian, but the first fossil evidence for such a structure is Carboniferous. This structure in the roots covers the water transport tissue and regulates ion exchange (and prevents unwanted pathogens etc. from entering the water transport system). The endodermis can also provide an upwards pressure, forcing water out of the roots when transpiration is not enough of a driver.

Once plants had evolved this level of controlled water transport, they were truly homoiohydric, able to extract water from their environment through root-like organs rather than relying on a film of surface moisture, enabling them to grow to much greater size. As a result of their independence from their surroundings, they lost their ability to survive desiccation – a costly trait to retain.

During the Devonian, maximum xylem diameter increased with time, with the minimum diameter remaining pretty constant. By the mid Devonian, the tracheid diameter of some plant lineages had plateaued. Wider tracheids allow water to be transported faster, but the overall transport rate depends also on the overall cross-sectional area of the xylem bundle itself. The increase in vascular bundle thickness further seems to correlate with the width of plant axes, and plant height; it is also closely related to the appearance of leaves and increased stomatal density, both of which would increase the demand for water.

While wider tracheids with robust walls make it possible to achieve higher water transport pressures, this increases the problem of cavitation. Cavitation occurs when a bubble of air forms within a vessel, breaking the bonds between chains of water molecules and preventing them from pulling more water up with their cohesive tension. A tracheid, once cavitated, cannot have its embolism removed and return to service (except in a few advanced angiosperms that have developed a mechanism of doing so). Therefore, it is well worth plants' while to avoid cavitation occurring. For this reason, pits in tracheid walls have very small diameters, to prevent air entering and allowing bubbles to nucleate. Freeze-thaw cycles are a major cause of cavitation. Damage to a tracheid's wall almost inevitably leads to air leaking in and cavitation, hence the importance of many tracheids working in parallel.

Cavitation is hard to avoid, but once it has occurred plants have a range of mechanisms to contain the damage. Small pits link adjacent conduits to allow fluid to flow between them, but not air – although ironically these pits, which prevent the spread of embolisms, are also a major cause of them. These pitted surfaces further reduce the flow of water through the xylem by as much as 30%. Conifers, by the Jurassic, developed an ingenious improvement, using valve-like structures to isolate cavitated elements. These torus-margo structures have a blob floating in the middle of a donut; when one side depressurises the blob is sucked into the torus and blocks further flow. Other plants simply accept cavitation; for instance, oaks grow a ring of wide vessels at the start of each spring, none of which survive the winter frosts. Maples use root pressure each spring to force sap upwards from the roots, squeezing out any air bubbles.

Growing to height also employed another trait of tracheids – the support offered by their lignified walls. Defunct tracheids were retained to form a strong, woody stem, produced in most instances by a secondary xylem. However, in early plants, tracheids were too mechanically vulnerable, and retained a central position, with a layer of tough sclerenchyma on the outer rim of the stems. Even when tracheids do take a structural role, they are supported by sclerenchymatic tissue.

Tracheids end with walls, which impose a great deal of resistance on flow; vessel members have perforated end walls, and are arranged in series to operate as if they were one continuous vessel. The function of end walls, which were the default state in the Devonian, was probably to avoid embolisms. An embolism is where an air bubble is created in a tracheid. This may happen as a result of freezing, or by gases dissolving out of solution. Once an embolism is formed, it usually cannot be removed (but see later); the affected cell cannot pull water up, and is rendered useless.

End walls excluded, the tracheids of prevascular plants were able to operate under the same hydraulic conductivity as those of the first vascular plant, Cooksonia.

The size of tracheids is limited as they comprise a single cell; this limits their length, which in turn limits their maximum useful diameter to 80 μm. Conductivity grows with the fourth power of diameter, so increased diameter has huge rewards; vessel elements, consisting of a number of cells, joined at their ends, overcame this limit and allowed larger tubes to form, reaching diameters of up to 500 μm, and lengths of up to 10 m.

Vessels first evolved during the dry, low CO2 periods of the late Permian, in the horsetails, ferns and Selaginellales independently, and later appeared in the mid Cretaceous in angiosperms and gnetophytes. Vessels allow the same cross-sectional area of wood to transport around a hundred times more water than tracheids! This allowed plants to fill more of their stems with structural fibres, and also opened a new niche to vines, which could transport water without being as thick as the tree they grew on. Despite these advantages, tracheid-based wood is a lot lighter, thus cheaper to make, as vessels need to be much more reinforced to avoid cavitation.

Read more about this topic:  Evolutionary History Of Plants, Evolution of Morphology

Other articles related to "xylem":

Stele (biology) - Siphonostele
... (phloem present only external to the xylem) or they can be amphiphloic (with phloem both external and internal to the xylem ... gaps and leaf traces give a dictyostele the appearance of many isolated islands of xylem surrounded by phloem ... The vascular bundles in a eustele can be collateral (with the phloem on only one side of the xylem) or bicollateral (with phloem on both sides of the xylem, as in some Solanaceae) ...
... Siphonosteles have a region of ground tissue called the pith internal to xylem ... Siphonosteles can be ectophloic (phloem present only external to the xylem) or they can be amphiphloic (with phloem both external and internal to the ... leaf gaps and leaf traces give a dictyostele the appearance of many isolated islands of xylem surrounded by phloem ...
Ascent Of Sap
... The ascent of sap in the xylem tissue of plants is the upward movement of water from the root to the crown ... Xylem is a complex tissue consisting of living and non-living cells ... The conducting cells in xylem are typically non-living and include, in various groups of plants, vessels members and tracheids ...
Xylem - Development - Patterns of Protoxylem and Metaxylem
... refers to the case in which the primary xylem forms a single cylinder in the centre of the stem and develops from the centre outwards ... The other three terms are used where there is more than one strand of primary xylem ... Exarch is used when there is more than one strand of primary xylem in a stem or root, and the xylem develops from the outside inwards towards the centre, i.e ...