Definition
An embedding of a topological space X as a dense subset of a compact space is called a compactification of X. It is often useful to embed topological spaces in compact spaces, because of the special properties compact spaces have.
Embeddings into compact Hausdorff spaces may be of particular interest. Since every compact Hausdorff space is a Tychonoff space, and every subspace of a Tychonoff space is Tychonoff, we conclude that any space possessing a Hausdorff compactification must be a Tychonoff space. In fact, the converse is also true; being a Tychonoff space is both necessary and sufficient for possessing a Hausdorff compactification.
The fact that large and interesting classes of non-compact spaces do in fact have compactifications of particular sorts makes compactification a common technique in topology.
Read more about this topic: Compactification (mathematics)
Famous quotes containing the word definition:
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)