Coimage

In algebra, the coimage of a homomorphism

f: AB

is the quotient

coim f = A/ker f

of domain and kernel. The coimage is canonically isomorphic to the image by the first isomorphism theorem, when that theorem applies.

More generally, in category theory, the coimage of a morphism is the dual notion of the image of a morphism. If f : XY, then a coimage of f (if it exists) is an epimorphism c : XC such that

  1. there is a map fc : CY with f = fcc,
  2. for any epimorphism z : XZ for which there is a map fz : ZY with f = fzz, there is a unique map π : ZC such that both c = πz and fz = fcπ.