The **Newton fractal** is a boundary set in the complex plane which is characterized by Newton's method applied to a fixed polynomial . It is the Julia set of the meromorphic function which is given by Newton's method. When there are no attractive cycles (of order greater than 1), it divides the complex plane into regions, each of which is associated with a root of the polynomial, . In this way the Newton fractal is similar to the Mandelbrot set, and like other fractals it exhibits an intricate appearance arising from a simple description. It is relevant to numerical analysis because it shows that (outside the region of quadratic convergence) the Newton method can be very sensitive to its choice of start point.

Many points of the complex plane are associated with one of the roots of the polynomial in the following way: the point is used as starting value for Newton's iteration, yielding a sequence of points, .... If the sequence converges to the root, then was an element of the region . However, for every polynomial of degree at least 2 there are points for which the Newton iteration does not converge to any root: examples are the boundaries of the basins of attraction of the various roots. There are even polynomials for which open sets of starting points fail to converge to any root: a simple example is, where some points are attracted by the cycle 0, 1, 0, 1 ... rather than by a root.

An open set for which the iterations converge towards a given root or cycle (that is not a fixed point), is a Fatou set for the iteration. The complementary set to the union of all these, is the Julia set. The Fatou sets have common boundary, namely the Julia set. Therefore each point of the Julia set is a point of accumulation for each of the Fatou sets. It is this property that causes the fractal structure of the Julia set (when the degree of the polynomial is larger than 2).

To plot interesting pictures, one may first choose a specified number of complex points and compute the coefficients of the polynomial

- .

Then for a rectangular lattice, ..., ..., of points in, one finds the index of the corresponding root and uses this to fill an × raster grid by assigning to each point a colour . Additionally or alternatively the colours may be dependent on the distance, which is defined to be the first value such that for some previously fixed small .

Read more about Newton Fractal: Generalization of Newton Fractals, See Also

### Famous quotes containing the word newton:

“I frame no hypotheses; for whatever is not deduced from the phenomena is to be called a hypothesis; and hypotheses, whether metaphysical or physical, whether of occult qualities or mechanical, have no place in experimental philosophy.”

—Isaac *Newton* (1642–1727)