Nakai Conjecture

In mathematics, the Nakai conjecture states that if V is a complex algebraic variety, such that its ring of differential operators is generated by the derivations it contains, then V is a smooth variety. This is the conjectural converse to a result of Alexander Grothendieck. It is known to be true for algebraic curves. The conjecture was proposed by the Japanese mathematician Yoshikazu Nakai.

A consequence would be the Zariski-Lipman conjecture, for a complex variety V with coordinate ring R: if the derivations of R are a free module over R, then V is smooth.

Famous quotes containing the word conjecture:

    There is something fascinating about science. One gets such wholesale returns of conjecture out of such a trifling investment of fact.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)