Markov Chain - Markov Chains - Steady-state Analysis and Limiting Distributions - Steady-state Analysis and The Time-inhomogeneous Markov Chain

Steady-state Analysis and The Time-inhomogeneous Markov Chain

A Markov chain need not necessarily be time-homogeneous to have an equilibrium distribution. If there is a probability distribution over states such that

for every state j and every time n then is an equilibrium distribution of the Markov chain. Such can occur in Markov chain Monte Carlo (MCMC) methods in situations where a number of different transition matrices are used, because each is efficient for a particular kind of mixing, but each matrix respects a shared equilibrium distribution.

Read more about this topic:  Markov Chain, Markov Chains, Steady-state Analysis and Limiting Distributions

Famous quotes containing the words analysis and/or chain:

    Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.
    Joan Didion (b. 1934)

    By this unprincipled facility of changing the state as often, and as much, and in as many ways as there are floating fancies or fashions, the whole chain and continuity of the commonwealth would be broken. No one generation could link with the other. Men would become little better than the flies of a summer.
    Edmund Burke (1729–1797)