In mathematics, the inverse trigonometric functions (occasionally called cyclometric functions) are the inverse functions of the trigonometric functions with suitably restricted domains.
The notations sin−1, cos−1, tan−1, etc. are often used for arcsin, arccos, arctan, etc., but this convention logically conflicts with the common semantics for expressions like sin2(x), which refer to numeric power rather than function composition, and therefore may result in confusion between multiplicative inverse and compositional inverse.
In computer programming languages the functions arcsin, arccos, arctan, are usually called asin, acos, atan. Many programming languages also provide the two-argument atan2 function, which computes the arctangent of y / x given y and x, but with a range of (−π, π].
Read more about Inverse Trigonometric Functions: Etymology of The Arc- Prefix, Principal Values, Relationships Among The Inverse Trigonometric Functions, Relationships Between Trigonometric Functions and Inverse Trigonometric Functions, General Solutions, Derivatives of Inverse Trigonometric Functions, Expression As Definite Integrals, Infinite Series, Continued Fractions For Arctangent, Indefinite Integrals of Inverse Trigonometric Functions, Two-argument Variant of Arctangent, Arctangent Function With Location Parameter, Logarithmic Forms, Arctangent Addition Formula, Application: Finding The Angle of A Right Triangle, Practical Considerations
Famous quotes containing the words inverse and/or functions:
“Yet time and space are but inverse measures of the force of the soul. The spirit sports with time.”
—Ralph Waldo Emerson (18031882)
“If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.”
—Charles Baudelaire (18211867)