Du Pont Central Research

Du Pont Central Research

In 1957, the research organization of the Chemicals Department of E. I. du Pont de Nemours and Company was renamed Central Research Department, beginning the history of the premier scientific organization within DuPont and one of the foremost industrial laboratories devoted to basic science. Located primarily at the DuPont Experimental Station and Chestnut Run, in Wilmington, Delaware, it has expanded to include laboratories in Geneva, Switzerland, Seoul, South Korea, Shanghai, China, and Hyderabad, India.

The company established a tradition of basic scientific research starting with hiring of Wallace Carothers in 1928 and his systemization of polymer science that led to the development of polyamides such as nylon-6,6 and polychloroprene (neoprene) in the early 1930s. This tradition waned during World War II then underwent a renaissance in the 1950s. The establishment of Central Research in 1957 formalized a corporate commitment to basic research. The execution and publication of high quality research assisted recruiting and promoted the image of DuPont while raising morale among the CRD staff. The purpose of the research was to discover "the next nylon", because Carothers' success and the resulting commercialization of nylon had driven the Company's profits through the 1950s. (This research objective that was never met.) Nonetheless, another important stated goal for CRD was “diversification through research,” and CRD produced a stream of scientific innovations that contributed to many different businesses throughout the corporation.

CRD Research Directors and

Vice Presidents

Years
Paul L.Salzberg 1957–1967
David M. McQueen 1968–1971
Theodore L. Cairns 1972–1975
Howard Ensign Simmons, Jr. 1975–1979
C. Edward Lorenz 1980
Robert Naylor 1981
Charles Bottomley 1982–1983
Richard Quisenberry 1984–1992
Joseph Miller 1993–1995
James M. Meyer 1997–2000
Thomas M. Connelly 2001–2005
Uma Chowdhry 2006–2010
Douglas W. Muzyka 2010–present

CRD combined industrial and fundamental research, and the mix of the two features was often determined by the head of CR&D. The title expanded from Director of Research to Vice President of Technology to Chief Technology Officer with varying degrees of impact on research throughout the corporation as well as in CRD. The name of CRD also changed to reflect the times, starting with Chemicals Department and moving through Central Research Department (CRD), Central Research and Development Department (CR&DD), to the present Central Research and Development (CR&D).

CRD conducted research in a number of topical areas, often requiring an interdisciplinary approach. DuPont’s explored chemical reactions in supercritical water in the 1950s to support its production of CrO2 for magnetic recording tapes. Hyperbaric recrystallization of ultra-high molecular weight polyethylene led to DuPont’s business in Hylamer polyethylene for bearing surfaces in hip and knee replacement arthroplasty. Urea and uracil compounds discovered in CRD were potent and selective herbicides, propelling DuPont into the agricultural chemicals business and culminating in sulfonylurea herbicides. Potassium titanyl phosphate or KTP is a versatile nonlinear optical material, originally designed to frequency doubling red lasers to green for bloodless laser eye surgery; it now find additional application in urological surgery and hand-held green laser pointers.

In the 1950s, the CRD housed a broad-based research program aimed largely at the synthesis and study of new classes of compounds. Synthesis of new organic and inorganic compounds accounted for about half of the total research. When the National Institute of Health invited DuPont to submit compounds to its screening efforts, they rated DuPont as submitting by far the most diverse range of compounds – pharmaceutical companies were submitting things that looked like pharmaceuticals, but DuPont submitted compounds that would be classed internally as catalysts, optical materials, monomers, oligomers, ligands, inorganics, and other unusual materials.

In addition to chemical synthesis, CRD maintained efforts centered on new physical and analytical techniques, chemical structure and reaction mechanism, and solid-state physics. DuPont continued in polymer research. Biological research has increased significantly.

Until recent years, a substantial portion of research was of an academic nature. This academic research was reflected in the general atmosphere of the organization. In the late 1960s, CRD established a program for recruiting postdoctoral fellows. These fellowships were generally for two years and had the expectation that the fellow would leave to an academic institution. Every year one or two DuPont scientists would take one year leaves of absence for university study and teaching. It was also accepted that every year a number of scientists would leave DuPont for academic positions and that several professors would join the staff permanently. A notable example was Richard Schrock, who left CRD for MIT and won the Nobel Prize for Chemistry. CRD was supported by numerous high profile consultants who have made significant contributions to DuPont. Jack Roberts of Caltech and Speed Marvel each consulted for well over 50 years and provided a steady supply of well-trained chemists.) Robert Grubbs, who shared the Nobel Prize with Schrock, consulted for many years. These academic connections were sources of new generations of CRD researchers.

The scientific accomplishments of Theodore L. Cairns, William D. Phillips, Earl Muetterties, Howard E. Simmons, Jr., and George Parshall were recognized by their election to the National Academy of Sciences.

CRD management fostered an open and collaborative style. At its founding, the division of labor in CRD was “management,” “bench chemists,” and “technicians,” with the management and bench chemists having separate but overlapped promotional tracks. Under the Hay Grade system of pay levels that was employed then and now, there were eight professional or promotional levels for the “bench chemists,” yet there was a single undistinguished title. This approach promoted interaction.

The Hay Grades for those in management started higher and ended considerably higher, but there was significant overlap with the bench chemist levels. Thus it was not unusual for a supervisor or manager to have one or more scientists reporting to him (there were no females in management at this time) who were at higher pay levels than he was. There was one reported instance where the supervisor never got to pass pay raises to the “bench chemist” because management didn’t want to make him feel bad; the next level Manager who did pass on the pay notification said, “They didn’t care how I felt.” Titles explicitly tied to salary level were instituted in May, 1993, but the openness remains today as does the situation of Managers managing higher level scientists.

At the beginning of CRD, “technicians” in CRD were usually high-school educated and often had military service. They were clearly just extra hands for the bench chemists who were all PhDs and the bench chemists were expected to spend most of their time at the bench. It was virtually impossible for a technician to progress in CRD, but they could at plant sites and would sometimes move for the opportunity. Starting in the early 1990s, mostly as a result of the growth of the pharmaceutical and life science efforts, technicians with Bachelors degrees and later, Master's degrees became the norm. There are even some technicians holding PhDs from foreign universities. Nonetheless, it remains difficult for a technician to break into the bench chemist ranks and they usually transfer to business units in search of more opportunity.

Many of the PhDs who came to CRD transferred to business units. From the 1980s to early 90s, management tried to move all PhDs to a business unit within their first five years. The PhDs had spent their entire lives in an academic environment, so they knew nothing else, but it was realized that at some point they would grow up and realize that working at the bench was not what some of them would want to do their entire career. The issue was that they were too senior and naive to move into entry level positions in businesses and their competition were similarly aged BS engineers who would have had about five years of experience keeping a plant running. Of those who took the opportunity, about half returned to CR&D. Of those who returned, about half left again. The relatively high turnover provided more opportunity for CRD to hire outstanding new PhDs. Transfers to business units became less common in the 1990s and the average age of CRD personnel rose considerably as a result. With baby-boomers starting to retire, there is more recruiting and there is a noticeable rejuvenation of the staff.

Responsibility for the technical direction of research has shifted to the chemist as they carry out short-term projects in support of the business units. PhDs who get MBAs are now more common. Unlike the early years, all management has had business unit experience and many were hired into business units, coming into CRD later in their careers. These managers are often far more administrative in their approach, not having the strong technical backgrounds required to keep up with their technical employees. Some managers have come to rely upon their senior technical staff, but there is no clear guideline on the role that these senior scientists can or should play in managing the programs and careers of the younger scientists.

Read more about Du Pont Central ResearchOrganofluorine Chemistry, Cyanocarbon Chemistry, Metal Oxides, Dynamic NMR Spectroscopy, Polymer Science, Organometallic Chemistry, Photochemistry and Physics, Biological Sciences, General References

Famous quotes containing the words research and/or central:

    After all, the ultimate goal of all research is not objectivity, but truth.
    Helene Deutsch (1884–1982)

    My solitaria
    Are the meditations of a central mind.
    I hear the motions of the spirit and the sound
    Of what is secret becomes, for me, a voice
    That is my own voice speaking in my ear.
    Wallace Stevens (1879–1955)