Application
Consider the problem of solving Poisson's equation with zero boundary conditions:
Here, is a given continuous function on
With the help of the concept of trace, define the subspace to be all functions in the Sobolev space (this space is also denoted ) whose trace is zero. Then, the equation above can be given the weak formulation
- Find in such that
- for all in
Using the Lax–Milgram theorem one can then prove that this equation has precisely one solution, which implies that the original equation has precisely one weak solution.
One can employ similar ideas to prove the existence and uniqueness of more complicated partial differential equations and with other boundary conditions (such as Neumann and Robin), with the notion of trace playing an important role in all such problems.
Read more about this topic: Trace Operator
Famous quotes containing the word application:
“There are very few things impossible in themselves; and we do not want means to conquer difficulties so much as application and resolution in the use of means.”
—François, Duc De La Rochefoucauld (16131680)
“My business is stanching blood and feeding fainting men; my post the open field between the bullet and the hospital. I sometimes discuss the application of a compress or a wisp of hay under a broken limb, but not the bearing and merits of a political movement. I make gruelnot speeches; I write letters home for wounded soldiers, not political addresses.”
—Clara Barton (18211912)
“We will not be imposed upon by this vast application of forces. We believe that most things will have to be accomplished still by the application called Industry. We are rather pleased, after all, to consider the small private, but both constant and accumulated, force which stands behind every spade in the field. This it is that makes the valleys shine, and the deserts really bloom.”
—Henry David Thoreau (18171862)