Trace Diagram - Formal Definition

Formal Definition

Let V be a vector space of dimension n over a field F (with n≥2), and let Fun(V,V) denote the linear transformations on V. An n-trace diagram is a graph, where the sets Vi (i = 1, 2, n) are composed of vertices of degree i, together with the following additional structures:

  • a ciliation at each vertex in the graph, which is an explicit ordering of the adjacent edges at that vertex;
  • a labeling V2 → Fun(V,V) associating each degree-2 vertex to a linear transformation.

Note that V2 and Vn should be considered as distinct sets in the case n = 2. A framed trace diagram is a trace diagram together with a partition of the degree-1 vertices V1 into two disjoint ordered collections called the inputs and the outputs.

The "graph" underlying a trace diagram may have the following special features, which are not always included in the standard definition of a graph:

  • Loops are permitted (a loop is an edges that connects a vertex to itself).
  • Edges that have no vertices are permitted, and are represented by small circles.
  • Multiple edges between the same two vertices are permitted.

Read more about this topic:  Trace Diagram

Famous quotes containing the words formal and/or definition:

    The formal Washington dinner party has all the spontaneity of a Japanese imperial funeral.
    Simon Hoggart (b. 1946)

    I’m beginning to think that the proper definition of “Man” is “an animal that writes letters.”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)