Classification of Riemannian Symmetric Spaces
The algebraic description of Riemannian symmetric spaces enabled Élie Cartan to obtain a complete classification of them in 1926.
For a given Riemannian symmetric space M let (G,K,σ,g) be the algebraic data associated to it. To classify possibly isometry classes of M, first note that the universal cover of a Riemannian symmetric space is again Riemannian symmetric, and the covering map is described by dividing the connected isometry group G of the covering by a subgroup of its center. Therefore we may suppose without loss of generality that M is simply connected. (This implies K is connected by the long exact sequence of a fibration, because G is connected by assumption.)
Read more about this topic: Symmetric Space
Famous quotes containing the word spaces:
“Though there were numerous vessels at this great distance in the horizon on every side, yet the vast spaces between them, like the spaces between the stars,far as they were distant from us, so were they from one another,nay, some were twice as far from each other as from us,impressed us with a sense of the immensity of the ocean, the unfruitful ocean, as it has been called, and we could see what proportion man and his works bear to the globe.”
—Henry David Thoreau (18171862)