Cluster Diffusion
Cluster diffusion involves motion of atomic clusters ranging in size from dimers to islands containing hundreds of atoms. Motion of the cluster may occur via the displacement of individual atoms, sections of the cluster, or the entire cluster moving at once. All of these processes involve a change in the cluster’s center of mass.
- Individual mechanisms are those that involve movement of one atom at a time.
- Edge diffusion involves movement of adatoms or vacancies at edge or kink sites. As shown in figure 10, the mobile atom maintains its proximity to the cluster throughout the process.
- Evaporation-condensation involves atoms “evaporating” from the cluster onto a terrace accompanied by “condensation” of terrace adatoms onto the cluster leading to a change in the cluster’s center of mass. While figure 10 appears to indicate the same atom evaporating from and condensing on the cluster, it may in fact be a different atom condensing from the 2D gas.
- Leapfrog diffusion is similar to edge diffusion, but where the diffusing atom actually moves atop the cluster before settling in a different location from its starting position.
- Sequential displacement refers to the process involving motion one atom at a time, moving to free nearest-neighbor sites.
(a) Dislocation | (b) Glide |
(c) Reptation | (d) Shear |
Figure 11. Concerted mechanisms for cluster diffusion. |
- Concerted mechanisms are those that involve movement of either sections of the cluster or the entire cluster all at once.
- Dislocation diffusion occurs when adjacent sub-units of a cluster move in a row-by-row fashion through displacement of a dislocation. As shown in figure 11(a) the process begins with nucleation of the dislocation followed by what is essentially sequential displacement on a concerted basis.
- Glide diffusion refers to the concerted motion of an entire cluster all at once (see figure 11(b)).
- Reptation is a snake-like movement (hence the name) involving sequential motion of cluster sub-units (see figure 11(c)).
- Shearing is a concerted displacement of a sub-unit of atoms within a cluster (see figure 11(d)).
- Size-dependence: the rate of cluster diffusion has a strong dependence on the size of the cluster, with larger cluster size generally corresponding to slower diffusion. This is not, however, a universal trend and it has been shown in some systems that the diffusion rate takes on a periodic tendency wherein some larger clusters diffuse faster than those smaller than them.
Read more about this topic: Surface Diffusion, Mechanisms
Famous quotes containing the word cluster:
“The power to guess the unseen from the seen, to trace the implications of things, to judge the whole piece by the pattern, the condition of feeling life in general so completely that you are well on your way to knowing any particular corner of itthis cluster of gifts may almost be said to constitute experience.”
—Henry James (18431916)
Main Site Subjects