Self-modeling Mixture Analysis

Self-modeling Mixture Analysis

Blind signal separation, also known as blind source separation, is the separation of a set of source signals from a set of mixed signals, without the aid of information (or with very little information) about the source signals or the mixing process. This problem is in general highly underdetermined, but useful solutions can be derived under a surprising variety of conditions. Much of the early literature in this field focuses on the separation of temporal signals such as audio. However, blind signal separation is now routinely performed on multidimensional data, such as images and tensors, which may involve no time dimension whatsoever.

Since the chief difficulty of the problem is its underdetermination, methods for blind source separation generally seek to narrow the set of possible solutions in a way that is unlikely to exclude the desired solution. In one approach, exemplified by principal and independent component analysis, one seeks source signals that are minimally correlated or maximally independent in a probabilistic or information-theoretic sense. A second approach, exemplified by nonnegative matrix factorization, is to impose structural constraints on the source signals. These structural constraints may be derived from a generative model of the signal, but are more commonly heuristics justified by good empirical performance. A common theme in the second approach is to impose some kind of low-complexity constraint on the signal, such as sparsity in some basis for the signal space. This approach can be particularly effective if one requires not the whole signal, but merely its most salient features.

There are different methods of blind signal separation:

  • Principal components analysis
  • Singular value decomposition
  • Independent component analysis
  • Dependent component analysis
  • Non-negative matrix factorization
  • Low-complexity coding and decoding
  • Stationary subspace analysis
  • Common spatial pattern

Read more about Self-modeling Mixture Analysis:  See Also

Famous quotes containing the words analysis and/or mixture:

    Ask anyone committed to Marxist analysis how many angels on the head of a pin, and you will be asked in return to never mind the angels, tell me who controls the production of pins.
    Joan Didion (b. 1934)

    His work was that curious mixture of bad painting and good intentions that always entitles a man to be called a representative British artist.
    Oscar Wilde (1854–1900)