Mechanism of Action
To date, the mechanism of action of paracetamol is not completely understood. The main mechanism proposed is the inhibition of cyclooxygenase (COX), and recent findings suggest that it is highly selective for COX-2. While it has analgesic and antipyretic properties comparable to those of aspirin or other NSAIDs, its peripheral anti-inflammatory activity is usually limited by several factors, one of which is the high level of peroxides present in inflammatory lesions. However, in some circumstances, even peripheral anti-inflammatory activity comparable to other NSAIDs can be observed. An article in Nature Communications from researchers in London, UK and Lund, Sweden in November 2011 has found a hint to the analgesic mechanism of acetaminophen (paracetamol), being that the metabolites of acetaminophen e.g. NAPQI, act on TRPA1-receptors in the spinal cord to suppress the signal transduction from the superficial layers of the dorsal horn, to alleviate pain.
Because of its selectivity for COX-2 it does not significantly inhibit the production of the pro-clotting thromboxanes.
The COX family of enzymes are responsible for the metabolism of arachidonic acid to prostaglandin H2, an unstable molecule that is, in turn, converted to numerous other pro-inflammatory compounds. Classical anti-inflammatories such as the NSAIDs block this step. Only when appropriately oxidized is the COX enzyme highly active.
Paracetamol reduces the oxidized form of the COX enzyme, preventing it from forming pro-inflammatory chemicals. This leads to a reduced amount of Prostaglandin E2 in the CNS, thus lowering the hypothalamic set-point in the thermoregulatory centre.
Paracetamol also modulates the endogenous cannabinoid system. Paracetamol is metabolized to AM404, a compound with several actions; what is most important is that it inhibits the reuptake of the endogenous cannabinoid/vanilloid anandamide by neurons. Anandamide reuptake would result in lower synaptic levels and less activation of the main pain receptor (nociceptor) of the body, the TRPV1 (older name: vanilloid receptor). By inhibiting anandamide reuptake, levels in the synapse remain high and are able to desensitize the TRPV1 receptor much like capsaicin. Furthermore, AM404 inhibits sodium channels, as do the anesthetics lidocaine and procaine. Either of these actions by themselves has been shown to reduce pain, and are a possible mechanism for paracetamol. However, it has been demonstrated that, after blocking cannabinoid receptors with synthetic antagonists, paracetamol's analgesic effects are prevented, suggesting its pain-relieving action involves the endogenous cannabinoid system. Spinal TRPA1 receptors have also been demonstrated to mediate antinociceptive effects of paracetamol and Δ9-tetrahydrocannabiorcol in mice.
Aspirin is known to inhibit the cyclooxygenase (COX) family of enzymes and, because paracetamol's action is partially similar to aspirin's, much research has focused on whether paracetamol also inhibits COX. It is now clear that paracetamol acts via at least two pathways.
The exact mechanisms by which COX is inhibited in various circumstances are still a subject of discussion. Because of differences in the activity of paracetamol, aspirin, and other NSAIDs, it has been postulated that further COX variants may exist. One theory holds that paracetamol works by inhibiting the COX-3 isoform - a COX-1 splice variant - of the COX family of enzymes. When expressed in dogs, this enzyme shares a strong similarity to the other COX enzymes, produces pro-inflammatory chemicals, and is selectively inhibited by paracetamol. However, some research has suggested that, in humans and mice, the COX-3 enzyme is without inflammatory action and paracetamol's blockage of it is not significant in its functioning in humans. Another possibility is that paracetamol blocks cyclooxygenase (as in aspirin), but that, in an inflammatory environment where the concentration of peroxides is high, the high oxidation state of paracetamol prevents its actions. This idea would mean that paracetamol has no direct effect at the site of inflammation, but instead acts in the CNS where the environment is not oxidative, to reduce temperature, etc. The exact mechanism by which paracetamol is believed to affect COX-3 is disputed.
Read more about this topic: Paracetamol
Famous quotes containing the words mechanism of, mechanism and/or action:
“The two elements the traveler first captures in the big city are extrahuman architecture and furious rhythm. Geometry and anguish. At first glance, the rhythm may be confused with gaiety, but when you look more closely at the mechanism of social life and the painful slavery of both men and machines, you see that it is nothing but a kind of typical, empty anguish that makes even crime and gangs forgivable means of escape.”
—Federico García Lorca (18981936)
“Ive never known a Philadelphian who wasnt a downright character; possibly a defense mechanism resulting from the dullness of their native habitat.”
—Anita Loos (18881981)
“The most fruitful and natural exercise of our mind, in my opinion, is discussion. I find it sweeter than any other action of our life.”
—Michel de Montaigne (15331592)