Option (finance) - Model Implementation - Finite Difference Models

Finite Difference Models

The equations used to model the option are often expressed as partial differential equations (see for example Black–Scholes equation). Once expressed in this form, a finite difference model can be derived, and the valuation obtained. A number of implementations of finite difference methods exist for option valuation, including: explicit finite difference, implicit finite difference and the Crank-Nicholson method. A trinomial tree option pricing model can be shown to be a simplified application of the explicit finite difference method. Although the finite difference approach is mathematically sophisticated, it is particularly useful where changes are assumed over time in model inputs – for example dividend yield, risk free rate, or volatility, or some combination of these – that are not tractable in closed form.

Read more about this topic:  Option (finance), Model Implementation

Famous quotes containing the words models, finite and/or difference:

    The parents who wish to lead a quiet life I would say: Tell your children that they are very naughty—much naughtier than most children; point to the young people of some acquaintances as models of perfection, and impress your own children with a deep sense of their own inferiority. You carry so many more guns than they do that they cannot fight you. This is called moral influence and it will enable you to bounce them as much as you please.
    Samuel Butler (1835–1902)

    For it is only the finite that has wrought and suffered; the infinite lies stretched in smiling repose.
    Ralph Waldo Emerson (1803–1882)

    It is so wonderful to our neurologists that a man can see without his eyes, that it does not occur to them that is just as wonderful that he should see with them; and that is ever the difference between the wise and the unwise: the latter wonders at what is unusual, the wise man wonders at the usual.
    Ralph Waldo Emerson (1803–1882)