Negligible Set - Derived Concepts

Derived Concepts

Let X be a set, and let I be an ideal of negligible subsets of X. If p is a proposition about the elements of X, then p is true almost everywhere if the set of points where p is true is the complement of a negligible set. That is, p may not always be true, but it's false so rarely that this can be ignored for the purposes at hand.

If f and g are functions from X to the same space Y, then f and g are equivalent if they are equal almost everywhere. To make the introductory paragraph precise, then, let X be N, and let the negligible sets be the finite sets. Then f and g are sequences. If Y is a topological space, then f and g have the same limit, or both have none. (When you generalise this to a directed sets, you get the same result, but for nets.) Or, let X be a measure space, and let negligible sets be the null sets. If Y is the real line R, then either f and g have the same integral, or neither integral is defined.

Read more about this topic:  Negligible Set

Famous quotes containing the words derived and/or concepts:

    A nation’s domestic and foreign policies and actions should be derived from the same standards of ethics, honesty and morality which are characteristic of the individual citizens of the nation.
    Jimmy Carter (James Earl Carter, Jr.)

    During our twenties...we act toward the new adulthood the way sociologists tell us new waves of immigrants acted on becoming Americans: we adopt the host culture’s values in an exaggerated and rigid fashion until we can rethink them and make them our own. Our idea of what adults are and what we’re supposed to be is composed of outdated childhood concepts brought forward.
    Roger Gould (20th century)