Nebular Hypothesis - Formation of Stars and Protoplanetary Disks - Protoplanetary Disks

Protoplanetary Disks

See also: Protoplanetary disk and planetesimal

Under certain circumstances the disk, which can now be called protoplanetary, may give birth to a planetary system. Protoplanetary disks have been observed around a very high fraction of stars in young star clusters. They exist from the beginning of a star's formation, but at the earliest stages are unobservable due to the opacity of the surrounding envelope. The disk of a Class 0 protostar is thought to be massive and hot. It is an accretion disk, which feeds the central protostar. The temperature can easily exceed 400 K inside 5 AU and 1,000 K inside 1 AU. The heating of the disk is primarily caused by the viscous dissipation of turbulence in it and by the infall of the gas from the nebula. The high temperature in the inner disk causes most of the volatile material—water, organics, and some rocks to evaporate, leaving only the most refractory elements like iron. The ice can survive only in the outer part of the disk.

The main problem in the physics of accretion disks is the generation of turbulence and the mechanism responsible for the high effective viscosity. The turbulent viscosity is thought to be responsible for the transport of the mass to the central protostar and momentum to the periphery of the disk. This is vital for accretion, because the gas can be accreted by the central protostar only if it loses most of its angular momentum, which must be carried away by the small part of the gas drifting outwards. The result of this process is the growth of both the protostar and of the disk radius, which can reach 1,000 AU if the initial angular momentum of the nebula is large enough. Large disks are routinely observed in many star-forming regions such as the Orion nebula.

The lifespan of the accretion disks is about 10 million years. By the time the star reaches the classical T-Tauri stage, the disk becomes thinner and cools. Less volatile materials start to condense close to its center, forming 0.1–1 μm dust grains that contain crystalline silicates. The transport of the material from the outer disk can mix these newly formed dust grains with primordial ones, which contain organic matter and other volatiles. This mixing can explain some peculiarities in the composition of solar system bodies such as the presence of interstellar grains in the primitive meteorites and refractory inclusions in comets.

Dust particles tend to stick to each other in the dense disk environment, leading to the formation of larger particles up to several centimeters in size. The signatures of the dust processing and coagulation are observed in the infrared spectra of the young disks. Further aggregation can lead to the formation of planetesimals measuring 1 km across or larger, which are the building blocks of planets. Planetesimal formation is another unsolved problem of disk physics, as simple sticking becomes ineffective as dust particles grow larger. The favorite hypothesis is formation by the gravitational instability. Particles several centimeters in size or larger slowly settle near the middle plane of the disk, forming a very thin—less than 100 km—and dense layer. This layer is gravitationally unstable and may fragment into numerous clumps, which in turn collapse into planetesimals.

Planetary formation can also be triggered by gravitational instability within the disk itself, which leads to its fragmentation into clumps. Some of them, if they are dense enough, will collapse, which can lead to rapid formation of gas giant planets and even brown dwarfs on the timescale of 1,000 years. However it is only possible in massive disks—more massive than 0.3 solar masses. In comparison typical disk masses are 0.01–0.03 solar masses. Because the massive disks are rare, this mechanism of the planet formation is thought to be infrequent. On the other hand, this mechanism may play a major role in the formation of brown dwarfs.

The ultimate dissipation of protoplanetary disks is triggered by a number of different mechanisms. The inner part of the disk is either accreted by the star or ejected by the bipolar jets, whereas the outer part can evaporate under the star's powerful UV radiation during the T Tauri stage or by nearby stars. The gas in the central part can either be accreted or ejected by the growing planets, while the small dust particles are ejected by the radiation pressure of the central star. What is finally left is either a planetary system, a remnant disk of dust without planets, or nothing, if planetesimals failed to form.

Because planetesimals are so numerous, and spread throughout the protoplanetary disk, some survive the formation of a planetary system. Asteroids are understood to be left-over planetesimals, gradually grinding each other down into smaller and smaller bits, while comets are typically planetesimals from the farther reaches of a planetary system. Meteorites are samples of planetesimals that reach a planetary surface, and provide a great deal of information about the formation of our Solar System. Primitive-type meteorites are chunks of shattered low-mass planetesimals, where no thermal differentiation took place, while processed-type meteorites are chunks from shattered massive planetesimals.

Read more about this topic:  Nebular Hypothesis, Formation of Stars and Protoplanetary Disks