Description
In general, gamma rays are produced by nuclear transitions from an unstable high-energy state, to a stable low-energy state. The energy of the emitted gamma ray corresponds to the energy of the nuclear transition, minus an amount of energy that is lost as recoil to the emitting atom. If the lost "recoil energy" is small compared with the energy linewidth of the nuclear transition, then the gamma ray energy still corresponds to the energy of the nuclear transition, and the gamma ray can be absorbed by a second atom of the same type as the first. This emission and subsequent absorption is called resonance. Additional recoil energy is also lost during absorption, so in order for resonance to occur the recoil energy must actually be less than half the linewidth for the corresponding nuclear transition.
The amount of energy in the recoiling body (E) can be found from momentum conservation:
where P is the momentum of the recoiling matter, and Pγ the momentum of the gamma ray. Substituting energy into the equation gives:
where E (0.002 eV for 57Fe) is the energy lost as recoil, Eγ is the energy of the gamma ray (14.4 keV for 57Fe), M (56.9354 u for 57Fe) is the mass of the emitting or absorbing body, and c is the speed of light. In the case of a gas the emitting and absorbing bodies are atoms, so the mass is quite small, resulting in a large recoil energy, which prevents resonance. (Note that the same equation applies for recoil energy losses in x-rays, but the photon energy is much less, resulting in a lower energy loss, which is why gas-phase resonance could be observed with x-rays.)
In a solid, the nuclei are bound to the lattice and do not recoil in the same way as in a gas. The lattice as a whole recoils but the recoil energy is negligible because the M in the above equation is the mass of the whole lattice. However, the energy in a decay can be taken up or supplied by lattice vibrations. The energy of these vibrations is quantised in units known as phonons. The Mössbauer effect occurs because there is a finite probability of a decay occurring involving no phonons. Thus in a fraction of the nuclear events (the recoil-free fraction, given by the Lamb–Mössbauer factor), the entire crystal acts as the recoiling body, and these events are essentially recoil-free. In these cases, since the recoil energy is negligible, the emitted gamma rays have the appropriate energy and resonance can occur.
In general (depending on the half-life of the decay), gamma rays have very narrow linewidths. This means they are very sensitive to small changes in the energies of nuclear transitions. In fact, gamma rays can be used as a probe to observe the effects of interactions between a nucleus and its electrons and those of its neighbors. This is the basis for Mössbauer spectroscopy, which combines the Mössbauer effect with the Doppler effect to monitor such interactions.
Zero-phonon optical transitions, a process closely analogous to the Mössbauer effect, can be observed in lattice-bound chromophores at low temperatures.
Read more about this topic: Mössbauer Effect
Famous quotes containing the word description:
“God damnit, why must all those journalists be such sticklers for detail? Why, theyd hold you to an accurate description of the first time you ever made love, expecting you to remember the color of the room and the shape of the windows.”
—Lyndon Baines Johnson (19081973)
“Do not require a description of the countries towards which you sail. The description does not describe them to you, and to- morrow you arrive there, and know them by inhabiting them.”
—Ralph Waldo Emerson (18031882)
“He hath achieved a maid
That paragons description and wild fame;
One that excels the quirks of blazoning pens.”
—William Shakespeare (15641616)