The mathematics of general relativity refers to various mathematical structures and techniques that are used in studying and formulating Albert Einstein's theory of general relativity. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.
- Note: General relativity articles using tensors will use the abstract index notation.
Read more about Mathematics Of General Relativity: Why Tensors?, Spacetime As A Manifold, Tensors in General Relativity, Tensor Fields in General Relativity, Tensorial Derivatives, The Riemann Curvature Tensor, The Energy-momentum Tensor, The Einstein Field Equations, The Geodesic Equations, Lagrangian Formulation, Mathematical Techniques For Analysing Spacetimes
Famous quotes containing the words mathematics, general and/or relativity:
“The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.”
—Willard Van Orman Quine (b. 1908)
“In democratic ages men rarely sacrifice themselves for another, but they show a general compassion for all the human race. One never sees them inflict pointless suffering, and they are glad to relieve the sorrows of others when they can do so without much trouble to themselves. They are not disinterested, but they are gentle.”
—Alexis de Tocqueville (18051859)
“By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bĂȘte noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!”
—Albert Einstein (18791955)