List of Numerical Analysis Topics - Finding Roots of Nonlinear Equations

Finding Roots of Nonlinear Equations

See #Numerical linear algebra for linear equations

Root-finding algorithm — algorithms for solving the equation f(x) = 0

  • General methods:
    • Bisection method — simple and robust; linear convergence
      • Lehmer–Schur algorithm — variant for complex functions
    • Fixed-point iteration
    • Newton's method — based on linear approximation around the current iterate; quadratic convergence
      • Kantorovich theorem — gives a region around solution such that Newton's method converges
      • Newton fractal — indicates which initial condition converges to which root under Newton iteration
      • Quasi-Newton method — uses an approximation of the Jacobian:
        • Broyden's method — uses a rank-one update for the Jacobian
        • SR1 formula — a symmetric (but not necessarily positive definite) rank-one update of the Jacobian
        • Davidon–Fletcher–Powell formula — update of the Jacobian in which the matrix remains positive definite
        • BFGS method — rank-two update of the Jacobian in which the matrix remains positive definite
        • Limited-memory BFGS method — truncated, matrix-free variant of BFGS method suitable for large problems
        • Orthant-wise limited-memory quasi-Newton — designed for log-linear models with l1-regularization
      • Steffensen's method — uses divided differences instead of the derivative
    • Secant method — based on linear interpolation at last two iterates
    • False position method — secant method with ideas from the bisection method
    • Muller's method — based on quadratic interpolation at last three iterates
    • Inverse quadratic interpolation — similar to Muller's method, but interpolates the inverse
    • Brent's method — combines bisection method, secant method and inverse quadratic interpolation
    • Ridders' method — fits a linear function times an exponential to last two iterates and their midpoint
    • Halley's method — uses f, f' and f''; achieves the cubic convergence
    • Householder's method — uses first d derivatives to achieve order d + 1; generalizes Newton's and Halley's method
  • Methods for polynomials:
    • Aberth method
    • Bairstow's method
    • Durand–Kerner method
    • Graeffe's method
    • Jenkins–Traub algorithm — fast, reliable, and widely used
    • Laguerre's method
    • Splitting circle method
  • Analysis:
    • Wilkinson's polynomial
  • Numerical continuation — tracking a root as one parameters in the equation changes
    • Piecewise linear continuation

Read more about this topic:  List Of Numerical Analysis Topics

Famous quotes containing the words finding and/or roots:

    As one delves deeper and deeper into Etiquette, disquieting thoughts come. That old Is- It-Worth-It Blues starts up again softly, perhaps, but plainly. Those who have mastered etiquette, who are entirely, impeccably right, would seem to arrive at a point of exquisite dullness. The letters and the conversations of the correct, as quoted by Mrs. Post, seem scarcely worth the striving for. The rules for finding topics of conversation fall damply on the spirit.
    Dorothy Parker (1893–1967)

    The cold smell of potato mould, the squelch and slap
    Of soggy peat, the curt cuts of an edge
    Through living roots awaken in my head.
    But I’ve no spade to follow men like them.
    Seamus Heaney (b. 1939)