Discovery of Isotopes
In 1913, as part of his exploration into the composition of canal rays, J. J. Thomson channeled a stream of ionized neon through a magnetic and an electric field and measured its deflection by placing a photographic plate in its path. Thomson observed two patches of light on the photographic plate (see image on right), which suggested two different parabolas of deflection. Thomson concluded that the neon gas was composed of atoms of two different atomic masses (neon-20 and neon-22).
Thomson's student Francis William Aston continued the research at the Cavendish Laboratory in Cambridge, building the first full functional mass spectrometer that was reported in 1919. He was able to identify isotopes of chlorine (35 and 37), bromine (79 and 81), and krypton (78, 80, 82, 83, 84 and 86), proving that these natural occurring elements are composed of a combination of isotopes. The use of electromagnetic focusing in mass spectrograph which rapidly allowed him to identify no fewer than 212 of the 287 naturally occurring isotopes. In 1921, F. W. Aston became a fellow of the Royal Society and received a Nobel Prize in Chemistry in the same year.
His work on isotopes also led to his formulation of the Whole Number Rule which states that "the mass of the oxygen isotope being defined, all the other isotopes have masses that are very nearly whole numbers," a rule that was used extensively in the development of nuclear energy. The exact mass of many isotopes was measured leading to the result that hydrogen has a 1% higher mass than expected by the average mass of the other elements. Aston speculated about the subatomic energy and the use of it in 1936.
In 1918, Arthur Jeffrey Dempster reported on his mass spectrometer and established the basic theory and design of mass spectrometers that is still used to this day. Dempster's research over his career centered around the mass spectrometer and its applications, leading in 1935 to his discovery of the uranium isotope 235U. This isotope's ability to cause a rapidly expanding fission nuclear chain reaction allowed the development of the atom bomb and nuclear power.
In 1932, Kenneth Bainbridge developed a mass spectrometer with a resolving power of 600 and a relative precision of one part in 10,000. He used this instrument to verify the equivalence of mass and energy, E = mc2.
Read more about this topic: History Of Mass Spectrometry
Famous quotes containing the words discovery of and/or discovery:
“The discovery of Pennsylvanias coal and iron was the deathblow to Allaire. The works were moved to Pennsylvania so hurriedly that for years pianos and the larger pieces of furniture stood in the deserted houses.”
—For the State of New Jersey, U.S. public relief program (1935-1943)
“The gain is not the having of children; it is the discovery of love and how to be loving.”
—Polly Berrien Berends (20th century)