Grothendieck Group - Universal Property

Universal Property

In its simplest form, the Grothendieck group of a commutative monoid is the universal way of making that monoid into an abelian group. Let M be a commutative monoid. Its Grothendieck group N should have the following universal property: There exists a monoid homomorphism

i:MN

such that for any monoid homomorphism

f:MA

from the commutative monoid M to an abelian group A, there is a unique group homomorphism

g:NA

such that

f=gi.

In the language of category theory, the functor that sends a commutative monoid M to its Grothendieck group N is left adjoint to the forgetful functor from the category of abelian groups to the category of commutative monoids.

Read more about this topic:  Grothendieck Group

Famous quotes containing the words universal and/or property:

    It is long ere we discover how rich we are. Our history, we are sure, is quite tame: we have nothing to write, nothing to infer. But our wiser years still run back to the despised recollections of childhood, and always we are fishing up some wonderful article out of that pond; until, by and by, we begin to suspect that the biography of the one foolish person we know is, in reality, nothing less than the miniature paraphrase of the hundred volumes of the Universal History.
    Ralph Waldo Emerson (1803–1882)

    It is a well-settled principle of the international code that where one nation owes another a liquidated debt which it refuses or neglects to pay the aggrieved party may seize on the property belonging to the other, its citizens or subjects, sufficient to pay the debt without giving just cause of war.
    Andrew Jackson (1767–1845)