Germanium - Characteristics - Chemistry

Chemistry

See also category: Germanium compounds

Elemental germanium oxidizes slowly to GeO2 at 250 °C. Germanium is insoluble in dilute acids and alkalis but dissolves slowly in concentrated sulfuric acid and reacts violently with molten alkalis to produce germanates (2−). Germanium occurs mostly in the oxidation state +4 although many compounds are known with the oxidation state of +2. Other oxidation states are rare, such as +3 found in compounds such as Ge2Cl6, and +3 and +1 observed on the surface of oxides, or negative oxidation states in germanes, such as −4 in GeH4. Germanium cluster anions (Zintl ions) such as Ge42−, Ge94−, Ge92−, 6− have been prepared by the extraction from alloys containing alkali metals and germanium in liquid ammonia in the presence of ethylenediamine or a cryptand. The oxidation states of the element in these ions are not integers—similar to the ozonides O3−.

Two oxides of germanium are known: germanium dioxide (GeO2, germania) and germanium monoxide, (GeO). The dioxide, GeO2 can be obtained by roasting germanium disulfide (GeS2), and is a white powder that is only slightly soluble in water but reacts with alkalis to form germanates. The monoxide, germanous oxide, can be obtained by the high temperature reaction of GeO2 with Ge metal. The dioxide (and the related oxides and germanates) exhibits the unusual property of having a high refractive index for visible light, but transparency to infrared light. Bismuth germanate, Bi4Ge3O12, (BGO) is used as a scintillator.

Binary compounds with other chalcogens are also known, such as the disulfide (GeS2), diselenide (GeSe2), and the monosulfide (GeS), selenide (GeSe), and telluride (GeTe). GeS2 forms as a white precipitate when hydrogen sulfide is passed through strongly acid solutions containing Ge(IV). The disulfide is appreciably soluble in water and in solutions of caustic alkalis or alkaline sulfides. Nevertheless, it is not soluble in acidic water, which allowed Winkler to discover the element. By heating the disulfide in a current of hydrogen, the monosulfide (GeS) is formed, which sublimes in thin plates of a dark color and metallic luster, and is soluble in solutions of the caustic alkalis. Upon melting with alkaline carbonates and sulfur, germanium compounds form salts known as thiogermanates.

Four tetrahalides are known. Under normal conditions GeI4 is a solid, GeF4 a gas and the others volatile liquids. For example, germanium tetrachloride, GeCl4, is obtained as a colorless fuming liquid boiling at 83.1 °C by heating the metal with chlorine. All the tetrahalides are readily hydrolyzed to hydrated germanium dioxide. GeCl4 is used in the production of organogermanium compounds. All four dihalides are known and in contrast to the tetrahalides are polymeric solids. Additionally Ge2Cl6 and some higher compounds of formula GenCl2n+2 are known. The unusual compound Ge6Cl16 has been prepared that contains the Ge5Cl12 unit with a neopentane structure.

Germane (GeH4) is a compound similar in structure to methane. Polygermanes—compounds that are similar to alkanes—with formula GenH2n+2 containing up to five germanium atoms are known. The germanes are less volatile and less reactive than their corresponding silicon analogues. GeH4 reacts with alkali metals in liquid ammonia to form white crystalline MGeH3 which contain the GeH3− anion. The germanium hydrohalides with one, two and three halogen atoms are colorless reactive liquids.

The first organogermanium compound was synthesized by Winkler in 1887; the reaction of germanium tetrachloride with diethylzinc yielded tetraethylgermane (Ge(C2H5)4). Organogermanes of the type R4Ge (where R is an alkyl) such as tetramethylgermane (Ge(CH3)4) and tetraethylgermane are accessed through the cheapest available germanium precursor germanium tetrachloride and alkyl nucleophiles. Organic germanium hydrides such as isobutylgermane ((CH3)2CHCH2GeH3) were found to be less hazardous and may be used as a liquid substitute for toxic germane gas in semiconductor applications. Many germanium reactive intermediates are known: germyl free radicals, germylenes (similar to carbenes), and germynes (similar to carbynes). The organogermanium compound 2-carboxyethylgermasesquioxane was first reported in the 1970s, and for a while was used as a dietary supplement and thought to possibly have anti-tumor qualities.

Read more about this topic:  Germanium, Characteristics

Famous quotes containing the word chemistry:

    Science with its retorts would have put me to sleep; it was the opportunity to be ignorant that I improved. It suggested to me that there was something to be seen if one had eyes. It made a believer of me more than before. I believed that the woods were not tenantless, but choke-full of honest spirits as good as myself any day,—not an empty chamber, in which chemistry was left to work alone, but an inhabited house,—and for a few moments I enjoyed fellowship with them.
    Henry David Thoreau (1817–1862)

    ...some sort of false logic has crept into our schools, for the people whom I have seen doing housework or cooking know nothing of botany or chemistry, and the people who know botany and chemistry do not cook or sweep. The conclusion seems to be, if one knows chemistry she must not cook or do housework.
    Ellen Henrietta Swallow Richards (1842–1911)

    For me chemistry represented an indefinite cloud of future potentialities which enveloped my life to come in black volutes torn by fiery flashes, like those which had hidden Mount Sinai. Like Moses, from that cloud I expected my law, the principle of order in me, around me, and in the world.... I would watch the buds swell in spring, the mica glint in the granite, my own hands, and I would say to myself: “I will understand this, too, I will understand everything.”
    Primo Levi (1919–1987)