Generic Property
In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If f : M → N is a smooth function between smooth manifolds, then a generic point of N is not a critical value of f." (This is by Sard's theorem.)
There are many different notions of "generic" (what is meant by "almost all") in mathematics, with corresponding dual notions of "almost none" (negligible set); the two main classes are:
- In measure theory, a generic property is one that holds almost everywhere, meaning "with probability 1", with the dual concept being null set, meaning "with probability 0".
- In topology and algebraic geometry, a generic property is one that holds on a dense open set, or more generally on a residual set, with the dual concept being a nowhere dense set, or more generally a meagre set.
Read more about Generic Property: Definitions: Measure Theory, Definitions: Topology, Genericity Results
Famous quotes containing the words generic and/or property:
“Mother has always been a generic term synonymous with love, devotion, and sacrifice. Theres always been something mystical and reverent about them. Theyre the Walter Cronkites of the human race . . . infallible, virtuous, without flaws and conceived without original sin, with no room for ambivalence.”
—Erma Bombeck (20th century)
“Thieves respect property. They merely wish the property to become their property that they may more perfectly respect it.”
—Gilbert Keith Chesterton (18741936)