Fast Fourier Transform - Definition and Speed

Definition and Speed

An FFT computes the DFT and produces exactly the same result as evaluating the DFT definition directly; the only difference is that an FFT is much faster. (In the presence of round-off error, many FFT algorithms are also much more accurate than evaluating the DFT definition directly, as discussed below.)

Let x0, ...., xN-1 be complex numbers. The DFT is defined by the formula

 X_k = \sum_{n=0}^{N-1} x_n e^{-{i 2\pi k \frac{n}{N}}}
\qquad
k = 0,\dots,N-1.

Evaluating this definition directly requires O(N2) operations: there are N outputs Xk, and each output requires a sum of N terms. An FFT is any method to compute the same results in O(N log N) operations. More precisely, all known FFT algorithms require Θ(N log N) operations (technically, O only denotes an upper bound), although there is no known proof that a lower complexity score is impossible.

To illustrate the savings of an FFT, consider the count of complex multiplications and additions. Evaluating the DFT's sums directly involves N2 complex multiplications and N(N − 1) complex additions . The well-known radix-2 Cooley–Tukey algorithm, for N a power of 2, can compute the same result with only (N/2) log2 N complex multiplies (again, ignoring simplifications of multiplications by 1 and similar) and N log2N complex additions. In practice, actual performance on modern computers is usually dominated by factors other than the speed of arithmetic operations and the analysis is a complicated subject (see, e.g., Frigo & Johnson, 2005), but the overall improvement from O(N2) to O(N log N) remains.

Read more about this topic:  Fast Fourier Transform

Famous quotes containing the words definition and/or speed:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    It was undoubtedly the feeling of exile—that sensation of a void within which never left us, that irrational longing to hark back to the past or else to speed up the march of time, and those keen shafts of memory that stung like fire.
    Albert Camus (1913–1960)