Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case for small deflections of a beam which is subjected to lateral loads only. It is thus a special case of Timoshenko beam theory which accounts for shear deformation and is applicable for thick beams. It was first enunciated circa 1750, but was not applied on a large scale until the development of the Eiffel Tower and the Ferris wheel in the late 19th century. Following these successful demonstrations, it quickly became a cornerstone of engineering and an enabler of the Second Industrial Revolution.
Additional analysis tools have been developed such as plate theory and finite element analysis, but the simplicity of beam theory makes it an important tool in the sciences, especially structural and mechanical engineering.
Read more about Euler–Bernoulli Beam Theory: History, Static Beam Equation, Dynamic Beam Equation, Stress, Boundary Considerations, Loading Considerations, Extensions
Famous quotes containing the words beam and/or theory:
“Why beholdest thou the mote that is in thy brothers eye, but considerest not the beam that is in thine own eye?”
—Bible: New Testament Jesus, in Matthew, 7:3.
From the Sermon on the Mount.
“We have our little theory on all human and divine things. Poetry, the workings of genius itself, which, in all times, with one or another meaning, has been called Inspiration, and held to be mysterious and inscrutable, is no longer without its scientific exposition. The building of the lofty rhyme is like any other masonry or bricklaying: we have theories of its rise, height, decline and fallwhich latter, it would seem, is now near, among all people.”
—Thomas Carlyle (17951881)