Environmental Stress Fracture

In materials science, environmental stress fracture or environment assisted fracture is the generic name given to premature failure under the influence of tensile stresses and harmful environments of materials such as metals and alloys, composites, plastics and ceramics.

Metals and alloys exhibit phenomena such as stress corrosion cracking, hydrogen embrittlement, liquid metal embrittlement and corrosion fatigue all coming under this category. Environments such as moist air, sea water and corrosive liquids and gases cause environmental stress fracture. Metal matrix composites are also susceptible to many of these processes.

Plastics and plastic-based composites may suffer swelling, debonding and loss of strength when exposed to organic fluids and other corrosive environments, such as acids and alkalies. Under the influence of stress and environment, many structural materials, particularly the high-specific strength ones become brittle and lose their resistance to fracture. While their fracture toughness remains unaltered, their threshold stress intensity factor for crack propagation may be considerably lowered. Consequently, they become prone to premature fracture because of sub-critical crack growth. This article aims to give a brief overview of the various degradation processes mentioned above.

Read more about Environmental Stress Fracture:  Stress Corrosion Cracking, Hydrogen Embrittlement, Case Studies

Famous quotes containing the word stress:

    A society which is clamoring for choice, which is filled with many articulate groups, each urging its own brand of salvation, its own variety of economic philosophy, will give each new generation no peace until all have chosen or gone under, unable to bear the conditions of choice. The stress is in our civilization.
    Margaret Mead (1901–1978)