Formal Definition
A Dirichlet process over a set S is a stochastic process whose sample path (i.e. an infinite-dimensional set of random variates drawn from the process) is a probability distribution on S. The finite dimensional distributions are from the Dirichlet distribution: If H is a finite measure on S, is a positive real number and X is a sample path drawn from a Dirichlet process, written as
then for any measureable partition of S, say, we have that
Read more about this topic: Dirichlet Process
Famous quotes containing the words formal and/or definition:
“True variety is in that plenitude of real and unexpected elements, in the branch charged with blue flowers thrusting itself, against all expectations, from the springtime hedge which seems already too full, while the purely formal imitation of variety ... is but void and uniformity, that is, that which is most opposed to variety....”
—Marcel Proust (1871–1922)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)