Development of The Cornish Engine
The Cornish engine depended on the use of steam pressure above atmospheric pressure, as devised by Richard Trevithick in the 19th century. Trevithick's early "puffer" engines discharged steam into the atmosphere. This differed from the Watt steam engine, which depended solely on the creation of a vacuum when steam was condensed. Trevithick's later ones (in the 1810s) combined the two principles, starting with high pressure steam but also condensing it in a separate condenser. In a parallel development Arthur Woolf developed the compound engine, in which the steam expanded in two cylinders successively.
When Trevithick left for South America in 1816 he passed his patent right to his latest invention to William Sims, who built (or adapted) a number of engines, including one at Wheal Chance (operating at 40 pounds per square inch above atmospheric pressure, which achieved a duty of nearly 50 million, but its duty then fell back. A test was carried out between a Trevithick type single-cylinder engine and a Woolf compound engine at Wheal Alfred in 1825, when both achieved a duty of slightly more than 40 million.
The next improvement was achieved in the late 1820s by Samuel Grose, who decreased the heat loss by insulating the pipes, cylinders, and boilers of the engines, improving the duty to more than 60 million at Wheal Hope and later to almost 80 million at Wheal Towan. Nevertheless, the best duty was usually a short-lived achievement due to general deterioration of machinery, leaks from boilers, and the deterioration of boiler plates (meaning that pressure had to be reduced).
Minor improvements increased the duty somewhat, but the engine seems to have reached its practical limits by the mid-1840s. With pressures of up to 50 psi, the shocks are likely to have caused machinery breakages. The same improvements in duty occurred in engines operating Cornish stamps and whims, but generally came slightly later. In both cases the best duty was lower than for pumping engines, particularly so for whim engines, whose work was discontinuous.
The impetus for the improvement of the steam engine came from Cornwall because to the high price of coal there, but both capital and maintenance costs were higher than a Watt steam engine. This long delayed the installation of Cornish engines outside Cornwall. A second hand Cornish engine was installed at East London Waterworks in 1838, and compared to a Watt engine with favourable results, because the price of coal in London was even higher than in Cornwall. However, in the main textile manufacturing areas, such as Manchester and Leeds, the coal price was too low to make replacement economic. Only in the late 1830s did textile manufacturers begin moving to high pressure engines, usually by adding a high pressure cylinder, forming a compound engine, rather than following the usual Cornish practice.
Read more about this topic: Cornish Engine
Famous quotes containing the words development of, development and/or engine:
“I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.”
—Gottlob Frege (18481925)
“To be sure, we have inherited abilities, but our development we owe to thousands of influences coming from the world around us from which we appropriate what we can and what is suitable to us.”
—Johann Wolfgang Von Goethe (17491832)
“The machine unmakes the man. Now that the machine is perfect, the engineer is nobody. Every new step in improving the engine restricts one more act of the engineer,unteaches him.”
—Ralph Waldo Emerson (18031882)