Concrete Category

A concrete category is a pair (C,U) such that

  • C is a category, and
  • U is a faithful functor CSet (the category of sets and functions).

The functor U is to be thought of as a forgetful functor, which assigns to every object of C its "underlying set", and to every morphism in C its "underlying function".

A category C is concretizable if there exists a concrete category (C,U); i.e., if there exists a faithful functor U:CSet. All small categories are concretizable: define U so that its object part maps each object b of C to the set of all morphisms of C whose codomain is b (i.e. all morphisms of the form f: ab for any object a of C), and its morphism part maps each morphism g: bc of C to the function U(g): U(b) → U(c) which maps each member f: ab of U(b) to the composition gf: ac, a member of U(c). (Item 6 under Further examples expresses the same U in less elementary language via presheaves.) The Counter-examples section exhibits two large categories that are not concretizable.

Read more about Concrete Category:  Remarks, Further Examples, Counter-examples, Implicit Structure of Concrete Categories, Relative Concreteness

Famous quotes containing the words concrete and/or category:

    Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.
    Walter Pater (1839–1894)

    The truth is, no matter how trying they become, babies two and under don’t have the ability to make moral choices, so they can’t be “bad.” That category only exists in the adult mind.
    Anne Cassidy (20th century)