Complex Network - Small-world Networks

Small-world Networks

A network is called a small-world network by analogy with the small-world phenomenon (popularly known as six degrees of separation). The small world hypothesis, which was first described by the Hungarian writer Frigyes Karinthy in 1929, and tested experimentally by Stanley Milgram (1967), is the idea that two arbitrary people are connected by only six degrees of separation, i.e. the diameter of the corresponding graph of social connections is not much larger than six. In 1998, Duncan J. Watts and Steven Strogatz published the first small-world network model, which through a single parameter smoothly interpolates between a random graph to a lattice. Their model demonstrated that with the addition of only a small number of long-range links, a regular graph, in which the diameter is proportional to the size of the network, can be transformed into a "small world" in which the average number of edges between any two vertices is very small (mathematically, it should grow as the logarithm of the size of the network), while the clustering coefficient stays large. It is known that a wide variety of abstract graphs exhibit the small-world property, e.g., random graphs and scale-free networks. Further, real world networks such as the World Wide Web and the metabolic network also exhibit this property.

In the scientific literature on networks, there is some ambiguity associated with the term "small world." In addition to referring to the size of the diameter of the network, it can also refer to the co-occurrence of a small diameter and a high clustering coefficient. The clustering coefficient is a metric that represents the density of triangles in the network. For instance, sparse random graphs have a vanishingly small clustering coefficient while real world networks often have a coefficient significantly larger. Scientists point to this difference as suggesting that edges are correlated in real world networks.

A framework for studying interactions between networks was recently established. Due to interdependencies such systems become significantly more vulnerable, with the appearance of cascading failures and a first order percolation transition.

Read more about this topic:  Complex Network

Famous quotes containing the word networks:

    To be perfectly, brutally honest, those of us who are still carrying diaper everywhere we go are not at our most scintillating time of life....We need to remember that at one time in our lives, we all had senses of humor and knew things that were going on in the world. And if we just keep our social networks open, there will be people ready to listen when we once again have intelligent things to say.
    Louise Lague (20th century)