Operating Principle
The key principle that drives the boost converter is the tendency of an inductor to resist changes in current. In a boost converter, the output voltage is always higher than the input voltage. A schematic of a boost power stage is shown in Figure 1.
(a) When the switch is closed, current flows through the inductor in clockwise direction and the inductor stores the energy. Polarity of the left side of the inductor is positive.
(b) When the switch is opened, current will be reduced as the impedance is higher. Therefore, change or reduction in current will be opposed by the inductor. Thus the polarity will be reversed (means left side of inductor will be negative now). As a result two sources will be in series causing a higher voltage to charge the capacitor through the diode D.
If the switch is cycled fast enough, the inductor will not discharge fully in between charging stages, and the load will always see a voltage greater than that of the input source alone when the switch is opened. Also while the switch is opened, the capacitor in parallel with the load is charged to this combined voltage. When the switch is then closed and the right hand side is shorted out from the left hand side, the capacitor is therefore able to provide the voltage and energy to the load. During this time, the blocking diode prevents the capacitor from discharging through the switch. The switch must of course be opened again fast enough to prevent the capacitor from discharging too much.
The basic principle of a Boost converter consists of 2 distinct states (see figure 2):
- in the On-state, the switch S (see figure 1) is closed, resulting in an increase in the inductor current;
- in the Off-state, the switch is open and the only path offered to inductor current is through the flyback diode D, the capacitor C and the load R. This results in transferring the energy accumulated during the On-state into the capacitor.
- The input current is the same as the inductor current as can be seen in figure 2. So it is not discontinuous as in the buck converter and the requirements on the input filter are relaxed compared to a buck converter.
Read more about this topic: Boost Converter, Circuit Analysis
Famous quotes containing the words operating and/or principle:
“Go on then in doing with your pen what in other times was done with the sword; shew that reformation is more practicable by operating on the mind than on the body of man.”
—Thomas Jefferson (17431826)
“Look through the whole history of countries professing the Romish religion, and you will uniformly find the leaven of this besetting and accursed principle of actionthat the end will sanction any means.”
—Samuel Taylor Coleridge (17721834)