In statistics, the Bayesian information criterion (BIC) or Schwarz criterion (also SBC, SBIC) is a criterion for model selection among a finite set of models. It is based, in part, on the likelihood function, and it is closely related to Akaike information criterion (AIC).
When fitting models, it is possible to increase the likelihood by adding parameters, but doing so may result in overfitting. The BIC resolves this problem by introducing a penalty term for the number of parameters in the model. The penalty term is larger in BIC than in AIC.
The BIC was developed by Gideon E. Schwarz, who gave a Bayesian argument for adopting it. It is closely related to the Akaike information criterion (AIC). In fact, Akaike was so impressed with Schwarz's Bayesian formalism that he developed his own Bayesian formalism, now often referred to as the ABIC for "a Bayesian Information Criterion" or more casually "Akaike's Bayesian Information Criterion".
Read more about Bayesian Information Criterion: Mathematically, Characteristics of The Bayesian Information Criterion, Applications
Famous quotes containing the words information and/or criterion:
“English literature is a kind of training in social ethics.... English trains you to handle a body of information in a way that is conducive to action.”
—Marilyn Butler (b. 1937)
“Faith in reason as a prime motor is no longer the criterion of the sound mind, any more than faith in the Bible is the criterion of righteous intention.”
—George Bernard Shaw (18561950)