Arsenic Toxicity - Kinetics


The two forms of inorganic arsenic, reduced (trivalent As (III)) and oxidized (pentavalent As(V)), can be absorbed, and accumulated in tissues and body fluids. In the liver, the metabolism of arsenic involves enzymatic and non-enzymatic methylation, the most frequently excreted metabolite (≥ 90%) in the urine of mammals is dimethylarsinic acid(or Cacodylic acid) (DMA(V)). Dimethylarsenic acid is also known as Agent Blue and was used as herbicide in the American war in the South-East Asian country of Viet Nam.

In humans inorganic arsenic is reduced nonenzymatically from pentoxide to trioxide, using glutathione (GSH) or it is mediated by enzymes. Reduction of arsenic pentoxide to arsenic trioxide increases its toxicity and bio availability, Methylation occurs through methyltransferase enzymes. S-adenosylmethionine (SAM) may serve as methyl donor. Various pathways are used, the principal route being dependent on the current environment of the cell. Resulting metabolites are monomethylarsonous acid (MMA(III)) and dimethylarsinous acid (DMA(III)).

Methylation had been regarded as a detoxification process. While in fact reduction from +5 As to +3 As may be considered as a bioactivation instead. Another suggestion is that methylation might be a detoxification if "As intermediates are not permitted to accumulate" because the pentavalent organoarsenics have a lower affinity to thiol groups than inorganic pentavalent arsenics. Gebel (2002) stated that methylation is a detoxification through accelerated excretion. With regard to carcinogenicity it has been suggested that methylation should be regarded as a toxification.

Arsenic, especially +3 As, binds to single, but with higher affinity to vicinal sulfhydryl groups, thus reacts with a variety of proteins and inhibits their activity. It was also proposed that binding of arsenite at nonessential sites might contribute to detoxification. Arsenite inhibits members of the disulfide oxidoreductase family like glutathione reductase and thioredoxin reductase.

The remaining unbound arsenic (≤ 10%) accumulates in cells, which over time may lead to skin, bladder, kidney, liver, lung, and prostate cancers. Other forms of arsenic toxicity in humans have been observed in blood, bone marrow, cardiac, central nervous system, gastrointestinal, gonadal, kidney, liver, pancreatic, and skin tissues.

Read more about this topic:  Arsenic Toxicity