Zero-area Sagnac Interferometer and Gravitational Wave Detection
The Sagnac topology was actually first described by Michelson in 1886, who employed an even-reflection variant of this interferometer in a repetition of the Fizeau experiment. Michelson noted the extreme stability of the fringes produced by this form of interferometer: White-light fringes were observed immediately upon alignment of the mirrors. In dual-path interferometers, white-light fringes are difficult to obtain since the two path lengths must be matched to within a couple of microns (the coherence length of the white light). However, being a common path interferometer, the Sagnac configuration inherently matches the two path lengths. Likewise Michelson observed that the fringe pattern would remain stable even while holding a lighted match below the optical path; in most interferometers the fringes would shift wildly due to the refractive index fluctuations from the warm air above the match. Sagnac interferometers are almost completely insensitive to displacements of the mirrors or beam-splitter. This characteristic of the Sagnac topology has led to their use in applications requiring exceptionally high stability.
The fringe shift in a Sagnac interferometer due to rotation has a magnitude proportional to the enclosed area of the light path, and this area must be specified in relation to the axis of rotation. Thus the sign of the area of a loop is reversed when the loop is wound in the opposite direction (clockwise or anti-clockwise). A light path that includes loops in both directions, therefore, has a net area given by the difference between the areas of the clockwise and anti-clockwise loops. The special case of two equal but opposite loops is called a Zero-area Sagnac interferometer. The result is an interferometer that exhibits the stability of the Sagnac topology while being insensitive to rotation.
The Laser Interferometer Gravitational-Wave Observatory (LIGO) consisted of two 4-km Michelson-Fabry-Pérot interferometers, and operated at a power level of about 100 watts of laser power at the beam splitter. A currently ongoing upgrade to Advanced LIGO will require several kilowatts of laser power, and scientists will need to contend with thermal distortion, frequency variation of the lasers, mirror displacement and thermally induced birefringence.
A variety of competing optical systems are being explored for third generation enhancements beyond Advanced LIGO. One of these competing proposals is based on the zero-area Sagnac design. With a light path consisting of two loops of the same area, but in opposite directions, an effective area of zero is obtained thus canceling the Sagnac effect in its usual sense. Although insensitive to low frequency mirror drift, laser frequency variation, reflectivity imbalance between the arms, and thermally induced birefringence, this configuration is nevertheless sensitive to passing gravitational waves at frequencies of astronomical interest. However, many considerations are involved in the choice of an optical system, and despite the zero-area Sagnac's superiority in certain areas, there is as yet no consensus choice of optical system for third generation LIGO.
Read more about this topic: Sagnac Effect, Practical Uses
Famous quotes containing the word wave:
“Now I stand as one upon a rock,
Environed with a wilderness of sea,
Who marks the waxing tide grow wave by wave,
Expecting ever when some envious surge
Will in his brinish bowels swallow him.”
—William Shakespeare (15641616)