Indian Astronomy - Astronomers


Name Year Contributions
Lagadha 1st millennium BCE The earliest astronomical text—named Vedānga Jyotiṣa details several astronomical attributes generally applied for timing social and religious events. The Vedānga Jyotiṣa also details astronomical calculations, calendrical studies, and establishes rules for empirical observation. Since the texts written by 1200 BCE were largely religious compositions the Vedānga Jyotiṣa has connections with Indian astrology and details several important aspects of the time and seasons, including lunar months, solar months, and their adjustment by a lunar leap month of Adhimāsa. Ritus and Yugas are also described. Tripathi (2008) holds that ' Twenty-seven constellations, eclipses, seven planets, and twelve signs of the zodiac were also known at that time.'
Aryabhata 476–550 CE Aryabhata was the author of the Āryabhatīya and the Aryabhatasiddhanta, which, according to Hayashi (2008): 'circulated mainly in the northwest of India and, through the Sāsānian dynasty (224–651) of Iran, had a profound influence on the development of Islamic astronomy. Its contents are preserved to some extent in the works of Varahamihira (flourished c. 550), Bhaskara I (flourished c. 629), Brahmagupta (598–c. 665), and others. It is one of the earliest astronomical works to assign the start of each day to midnight.' Aryabhata explicitly mentioned that the earth rotates about its axis, thereby causing what appears to be an apparent westward motion of the stars. Aryabhata also mentioned that reflected sunlight is the cause behind the shining of the moon. Ayrabhata's followers were particularly strong in South India, where his principles of the diurnal rotation of the earth, among others, were followed and a number of secondary works were based on them.
Brahmagupta 598–668 CE Brahmasphuta-siddhanta (Correctly Established Doctrine of Brahma, 628 CE) dealt with both Indian mathematics and astronomy. Hayashi (2008) writes: 'It was translated into Arabic in Baghdad about 771 and had a major impact on Islamic mathematics and astronomy.' In Khandakhadyaka (A Piece Eatable, 665 CE) Brahmagupta reinforced Aryabhata's idea of another day beginning at midnight. Bahmagupta also calculated the instantaneous motion of a planet, gave correct equations for parallax, and some information related to the computation of eclipses. His works introduced Indian concept of mathematics based astronomy into the Arab world.
Varāhamihira 505 CE Varāhamihira was an astronomer and mathematician who studied and Indian astronomy as well as the many principles of Greek, Egyptian, and Roman astronomical sciences. His Pañcasiddhāntikā is a treatise and compendium drawing from several knowledge systems.
Bhāskara I 629 CE Authored the astronomical works Mahabhaskariya (Great Book of Bhaskara), Laghubhaskariya (Small Book of Bhaskara), and the Aryabhatiyabhashya (629 CE)—a commentary on the Āryabhatīya written by Aryabhata. Hayashi (2008) writes 'Planetary longitudes, heliacal rising and setting of the planets, conjunctions among the planets and stars, solar and lunar eclipses, and the phases of the Moon are among the topics Bhaskara discusses in his astronomical treatises.' Baskara I's works were followed by Vateśvara (880 CE), who in his eight chapter Vateśvarasiddhānta devised methods for determining the parallax in longitude directly, the motion of the equinoxes and the solstices, and the quadrant of the sun at any given time.
Lalla 8th century CE Author of the Śisyadhīvrddhida (Treatise Which Expands the Intellect of Students), which corrects several assumptions of Āryabhata. The Śisyadhīvrddhida of Lalla itself is divided into two parts:Grahādhyāya and Golādhyāya. Grahādhyāya (Chapter I-XIII) deals with planetary calculations, determination of the mean and true planets, three problems pertaining to diurnal motion of Earth, eclipses, rising and setting of the planets, the various cusps of the moon, planetary and astral conjunctions, and complementary situations of the sun and the moon. The second part—titled Golādhyāya (chapter XIV–XXII)—deals with graphical representation of planetary motion, astronomical instruments, spherics, and emphasizes on corrections and rejection of flawed principles. Lalla shows influence of Āryabhata, Brahmagupta, and Bhāskara I. His works were followed by later astronomers Śrīpati, Vateśvara, and Bhāskara II. Lalla also authored the Siddhāntatilaka.
Bhāskara II 1114 CE Authored Siddhāntaśiromaṇi (Head Jewel of Accuracy) and Karaṇakutūhala (Calculation of Astronomical Wonders) and reported on his observations of planetary positions, conjunctions, eclipses, cosmography, geography, mathematics, and astronomical equipment used in his research at the observatory in Ujjain, which he headed.
Śrīpati 1045 CE Śrīpati was an astronomer and mathematician who followed the Brhmagupta school and authored the Siddhāntaśekhara (The Crest of Established Doctrines) in 20 chapters, thereby introducing several new concepts, including moon's second ineuqlity.
Mahendra Suri 14th century CE Mahendra Suri authored the Yantra-rāja (The King of Instruments, written in 1370 CE)—a Sanskrit work on the astrolabe, itself introduced in India during the reign of the 14th century Tughlaq dynasty ruler Firuz Shah Tughluq (1351–1388 CE). Suri seems to have been a Jain astronomer in the service of Firuz Shah Tughluq. The 182 verse Yantra-rāja mentions the astrolabe from the first chapter onwards, and also presents a fundamental formula along with a numerical table for drawing an astrolabe although the proof itself has not been detailed. Longitudes of 32 stars as well as their latitudes have also been mentioned. Mahendra Suri also explained the Gnomon, equatorial co-ordinates, and elliptical co-ordinates. The works of Mahendra Suri may have influenced later astronomers like Padmanābha (1423 CE)—author of the Yantra-rāja-adhikāra, the first chapter of his Yantra-kirnāvali.
Nilakanthan Somayaji 1444–1544 CE In 1500, Nilakanthan Somayaji of the Kerala school of astronomy and mathematics, in his Tantrasangraha, revised Aryabhata's model for the planets Mercury and Venus. His equation of the centre for these planets remained the most accurate until the time of Johannes Kepler in the 17th century. Nilakanthan Somayaji, in his Aryabhatiyabhasya, a commentary on Aryabhata's Aryabhatiya, developed his own computational system for a partially heliocentric planetary model, in which Mercury, Venus, Mars, Jupiter and Saturn orbit the Sun, which in turn orbits the Earth, similar to the Tychonic system later proposed by Tycho Brahe in the late 16th century. Nilakantha's system, however, was mathematically more efficient than the Tychonic system, due to correctly taking into account the equation of the centre and latitudinal motion of Mercury and Venus. Most astronomers of the Kerala school of astronomy and mathematics who followed him accepted his planetary model. He also authored a treatise titled Jyotirmimamsa stressing the necessity and importance of astronomical observations to obtain correct parameters for computations.
Acyuta Pisārati 1550–1621 CE Sphutanirnaya (Determination of True Planets) details an elliptical correction to existing notions. Sphutanirnaya was later expanded to Rāśigolasphutānīti (True Longitude Computation of the Sphere of the Zodiac). Another work, Karanottama deals with eclipses, complementary relationship between the sun and the moon, and 'the derivation of the mean and true planets'. In Uparāgakriyākrama (Method of Computing Eclipses), Acyuta Pisārati suggests improvements in methods of calculation of eclipses.

Read more about this topic:  Indian Astronomy

Other articles related to "astronomers":

Babylonian Astronomers - Neo-Babylonian Astronomy - Empirical Astronomy
... lack of surviving material on Babylonian planetary theory, it appears most of the Chaldean astronomers were concerned mainly with ephemerides and not with theory ... philosophy like that of the later Hellenistic models, though the Babylonian astronomers were concerned with the philosophy dealing with the ideal nature of the early universe ... Whereas Greek astronomers expressed "prejudice in favor of circles or spheres rotating with uniform motion", such a preference did not exist for Babylonian astronomers, for whom ...
Stargazing - Scientific Research
... often not the main goal for many amateur astronomers, unlike professional astronomy ... contribute to the knowledge base of professional astronomers ... The majority of scientific contributions by amateur astronomers are in the area of data collection ...
Low-ionization Nuclear Emission-line Region - Scientific Debates: Energy Sources and Ionization Mechanisms
... First, astronomers have debated the source of energy that excites the ionized gas in the centers of these galaxies ... Some astronomers have proposed that active galactic nuclei (AGN) with supermassive black holes are responsible for the LINER spectral emission ... Other astronomers have asserted that the emission is powered by star formation regions ...