Known Attacks
For cryptographers, a cryptographic "break" is anything faster than a brute force—performing one trial decryption for each key (see Cryptanalysis). This includes results that are infeasible with current technology. The largest successful publicly known brute force attack against any block-cipher encryption was against a 64-bit RC5 key by distributed.net in 2006.
AES has a fairly simple algebraic description. In 2002, a theoretical attack, termed the "XSL attack", was announced by Nicolas Courtois and Josef Pieprzyk, purporting to show a weakness in the AES algorithm due to its simple description. Since then, other papers have shown that the attack as originally presented is unworkable; see XSL attack on block ciphers.
During the AES process, developers of competing algorithms wrote of Rijndael, "...we are concerned about use...in security-critical applications." However, in October 2000 at the end of the AES selection process in, Bruce Schneier, a developer of the competing algorithm Twofish, wrote that while he thought successful academic attacks on Rijndael would be developed someday, "I do not believe that anyone will ever discover an attack that will allow someone to read Rijndael traffic."
On July 1, 2009, Bruce Schneier blogged about a related-key attack on the 192-bit and 256-bit versions of AES, discovered by Alex Biryukov and Dmitry Khovratovich, which exploits AES's somewhat simple key schedule and has a complexity of 2119. In December 2009 it was improved to 299.5. This is a follow-up to an attack discovered earlier in 2009 by Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolić, with a complexity of 296 for one out of every 235 keys.
Another attack was blogged by Bruce Schneier on July 30, 2009 and released as a preprint on August 3, 2009. This new attack, by Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, and Adi Shamir, is against AES-256 that uses only two related keys and 239 time to recover the complete 256-bit key of a 9-round version, or 245 time for a 10-round version with a stronger type of related subkey attack, or 270 time for an 11-round version. 256-bit AES uses 14 rounds, so these attacks aren't effective against full AES.
In November 2009, the first known-key distinguishing attack against a reduced 8-round version of AES-128 was released as a preprint. This known-key distinguishing attack is an improvement of the rebound or the start-from-the-middle attacks for AES-like permutations, which view two consecutive rounds of permutation as the application of a so-called Super-Sbox. It works on the 8-round version of AES-128, with a time complexity of 248, and a memory complexity of 232.
In July 2010 Vincent Rijmen published an ironic paper on "chosen-key-relations-in-the-middle" attacks on AES-128.
The first key-recovery attacks on full AES were due to Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger, and were published in 2011. The attack is based on bicliques and is faster than brute force by a factor of about four. It requires 2126.1 operations to recover an AES-128 key. For AES-192 and AES-256, 2189.7 and 2254.4 operations are needed, respectively.
Read more about this topic: Advanced Encryption Standard, Security
Famous quotes containing the word attacks:
“I find that with me low spirits and feeble health come and go together. The last two or three months I have had frequent attacks of the blues. They generally are upon me or within me when I am somewhat out of order in bowels, throat, or head.”
—Rutherford Birchard Hayes (18221893)
“We are supposed to be the children of Seth; but Seth is too much of an effete nonentity to deserve ancestral regard. No, we are the sons of Cain, and with violence can be associated the attacks on sound, stone, wood and metal that produced civilisation.”
—Anthony Burgess (b. 1917)