1851–1899
Date | Place | Event |
---|---|---|
1851 | After 30 years of development, Thomas de Colmar launched the mechanical calculator industry by starting the manufacturing of a much simplified Arithmometer (invented in 1820). Aside from its clones, which started thirty years later, it was the only calculating machine available anywhere in the world for forty years (Dorr E. Felt only sold one hundred comptometers and a few comptographs from 1887 to 1890). Its simplicity made it the most reliable calculator to date. It was a big machine (a 20 digit arithmometer was long enough to occupy most of a desktop). Even though the arithmometer was only manufactured until 1915, twenty European companies manufactured improved clones of its design until the beginning of WWII ; they were Burkhardt, Layton, Saxonia, Gräber, Peerless, Mercedes-Euklid, XxX, Archimedes, etc... | |
1853 | To Babbage's delight, the Scheutzes completed the first full-scale difference engine, which they called a Tabulating Machine. It operated on 15-digit numbers and 4th-order differences, and produced printed output just as Babbage's would have. A second machine was later built to the same design by the firm of Bryan Donkin of London. | |
1858 | The first Tabulating Machine (see 1853) was bought by the Dudley Observatory in Albany, New York, and the second by the British government. The Albany machine was used to produce a set of astronomical tables; but the Observatory's director was fired for this extravagant purchase, and the machine never seriously used again, eventually ending up in a museum. The second machine had a long and useful life. | |
1869 | The first practical logic machine was built by William Stanley Jevons. | |
1871 | Babbage produced a prototype section of the Analytical Engine's mill and printer. | |
1875 | Martin Wiberg produced a reworked difference-engine-like machine intended to prepare logarithmic tables. | |
1878 | Ramon Verea, living in New York City, invented a calculator with an internal multiplication table; this was much faster than the shifting carriage, or other digital methods of the time. He wasn't interested in putting it into production, however; it seems he just wanted to show that a Spaniard could invent as well as an American. | |
1879 | A committee investigated the feasibility of completing the Analytical Engine, and concluded that it would be impossible now that Babbage was dead. The project was then largely forgotten, except by a very few; Howard Aiken was a notable exception. | |
1884 | Dorr Felt, of Chicago, developed his Comptometer. This was the first calculator in which operands are entered by pressing keys rather than having to be, for example, dialled in. It was feasible because of Felt's invention of a carry mechanism fast enough to act while the keys return from being pressed. Felt and Tarrant started a partnership to manufacture the comptometer in 1887. | |
1885 | A multiplying calculator more compact than the Arithmometer entered mass production. The design was the independent, and more or less simultaneous, invention of Frank S. Baldwin, of the United States, and Willgodt Theophil Odhner, a Swede living in Russia. Fluted drums were replaced by a "variable-toothed gear" design: a disk with radial pegs that could be made to protrude or retract from it. | |
1886 | Herman Hollerith developed the first version of his tabulating system in the Baltimore Department of Health. | |
1889 | Dorr Felt invented the first printing desk calculator. | |
1890 | The 1880 US census had taken 7 years to complete since all processing had been done by hand from journal sheets. The increasing population suggested that by the 1890 census, data processing would take longer than the 10 years before the next census —so a competition was held to find a better method. It was won by a Census Department employee, Herman Hollerith, who went on to found the Tabulating Machine Company, later to become IBM. He invented the recording of data on a medium that could then be read by a machine. Prior uses of machine readable media had been for control (Automatons, Piano rolls, looms, ...), not data. "After some initial trials with paper tape, he settled on punched cards..." His machines used mechanical relays (and solenoids) to increment mechanical counters. This method was used in the 1890 census and the completed results (62,622,250 people) were ... finished months ahead of schedule and far under budget. The inspiration for this invention was Hollerith's observation of railroad conductors during a trip in the western US; they encoded a crude description of the passenger (tall, bald, male) in the way they punched the ticket. | |
1892 | William S. Burroughs of St. Louis, invented a machine similar to Felt's (see 1884) in 1885 but unlike the comptometer it was a 'key-set' machine which only processed each number after a crank handle was pulled. The true manufacturing of this machine started in 1892 even though Burroughs had started his American Arithmometer Company in 1886 (it later became Burroughs Corporation and is now called Unisys). | |
1896 | Herman Hollerith introduced an Integrating Tabulator that could add numbers encoded on punched cards to one of several 7-digit counters. His earlier tabulators simply incremented counters based on whether a hole was punched or not. |
Read more about this topic: Timeline Of Computing Hardware 2400 BC–1949