Tensor Product of Modules

In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (roughly speaking, "multiplication") to be carried out in terms of linear maps (module homomorphisms). The module construction is analogous to the construction of the tensor product of vector spaces, but can be carried out for a pair of modules over a commutative ring resulting in a third module, and also for a pair of a left-module and a right-module over any ring, with result an abelian group. Tensor products are important in areas of abstract algebra, homological algebra, algebraic topology and algebraic geometry. The universal property of the tensor product of vector spaces extends to more general situations in abstract algebra. It allows the study of bilinear or multilinear operations via linear operations. The tensor product of an algebra and a module can be used for extension of scalars. For a commutative ring, the tensor product of modules can be iterated to form the tensor algebra of a module, allowing one to define multiplication in the module in a universal way.

Read more about Tensor Product Of Modules:  Multilinear Mappings, Definition, Examples, Construction, Relationship To Flat Modules, Several Modules, Additional Structure, See Also

Famous quotes containing the word product:

    Out of the thousand writers huffing and puffing through movieland there are scarcely fifty men and women of wit or talent. The rest of the fraternity is deadwood. Yet, in a curious way, there is not much difference between the product of a good writer and a bad one. They both have to toe the same mark.
    Ben Hecht (1893–1964)