Symplectomorphism - Comparison With Riemannian Geometry

Comparison With Riemannian Geometry

Unlike Riemannian manifolds, symplectic manifolds are not very rigid: Darboux's theorem shows that all symplectic manifolds of the same dimension are locally isomorphic. In contrast, isometries in Riemannian geometry must preserve the Riemann curvature tensor, which is thus a local invariant of the Riemannian manifold. Moreover, every function H on a symplectic manifold defines a Hamiltonian vector field XH, which exponentiates to a one-parameter group of Hamiltonian diffeomorphisms. It follows that the group of symplectomorphisms is always very large, and in particular, infinite-dimensional. On the other hand, the group of isometries of a Riemannian manifold is always a (finite-dimensional) Lie group. Moreover, Riemannian manifolds with large symmetry groups are very special, and a generic Riemannian manifold has no nontrivial symmetries.

Read more about this topic:  Symplectomorphism

Famous quotes containing the words comparison with, comparison and/or geometry:

    [Girls] study under the paralyzing idea that their acquirements cannot be brought into practical use. They may subserve the purposes of promoting individual domestic pleasure and social enjoyment in conversation, but what are they in comparison with the grand stimulation of independence and self- reliance, of the capability of contributing to the comfort and happiness of those whom they love as their own souls?
    Sarah M. Grimke (1792–1873)

    Certainly there is not the fight recorded in Concord history, at least, if in the history of America, that will bear a moment’s comparison with this, whether for the numbers engaged in it, or for the patriotism and heroism displayed.
    Henry David Thoreau (1817–1862)

    ... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. It’s not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, I’m able to avoid or manipulate or process pain.
    Louise Bourgeois (b. 1911)