Uniform Distribution
For more details on this topic, see German tank problem.For sampling without replacement from a uniform distribution with one or two unknown endpoints (so with N unknown, or with both M and N unknown), the sample maximum, or respectively the sample maximum and sample minimum, are sufficient and complete statistics for the unknown endpoints; thus an unbiased estimator derived from these will be UMVU estimator.
If only the top endpoint is unknown, the sample maximum is a biased estimator for the population maximum, but the unbiased estimator (where m is the sample maximum and k is the sample size) is the UMVU estimator; see German tank problem for details.
If both endpoints are unknown, then the sample range is a biased estimator for the population range, but correcting as for maximum above yields the UMVU estimator.
If both endpoints are unknown, then the mid-range is an unbiased (and hence UMVU) estimator of the midpoint of the interval (here equivalently the population median, average, or mid-range).
The reason the sample extrema are sufficient statistics is that the conditional distribution of the non-extreme samples is just the distribution for the uniform interval between the sample maximum and minimum – once the endpoints are fixed, the values of the interior points add no additional information.
Read more about this topic: Sample Maximum And Minimum, Applications, Estimation
Famous quotes containing the words uniform and/or distribution:
“We know, Mr. Wellerwe, who are men of the worldthat a good uniform must work its way with the women, sooner or later.”
—Charles Dickens (18121870)
“My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.”
—Rutherford Birchard Hayes (18221893)