Inertial Mass
The only apparent difference between inertial mass and gravitational mass is the method used to determine them.
Gravitational mass is measured by comparing the force of gravity of an unknown mass to the force of gravity of a known mass. This is typically done with some sort of balance. Equal masses will match on a balance because the gravitational field applies to them equally, producing identical weight. This assumption breaks down near supermassive objects such as black holes and neutron stars due to tidal effects. It also breaks down in weightless environments, because no matter what objects are compared, it will yield a balanced reading.
Inertial mass is found by applying a known net force to an unknown mass, measuring the resulting acceleration, and applying Newton's Second Law, m = F/a. This gives an accurate value for mass, limited only by the accuracy of the measurements. When astronauts need to be measured in the weightlessness of free fall, they actually find their inertial mass in a special chair called a body mass measurement device (BMMD).
No physical difference has been found between gravitational and inertial mass. In experimental measurements, the two always agree within the margin of error for the experiment. Einstein used the fact that gravitational and inertial mass were equal to begin his General Theory of Relativity in which he postulated that gravitational mass was the same as inertial mass, and that the acceleration of gravity is a result of a 'valley' or slope in the space-time continuum that masses 'fell down' much as pennies spiral around a hole in the common donation toy at a chain store. Dennis Sciama later showed that the reaction force produced by the combined gravity of all matter in the universe upon an accelerating object is mathematically equal to the object's inertia, but this would only be a workable physical explanation if by some mechanism the gravitational effects operated instantaneously.
Since Einstein used inertial mass to describe special relativity, inertial mass is closely related to relativistic mass and is therefore different from rest mass.
Read more about this topic: Principle Of Inertia (physics), Interpretations
Famous quotes containing the word mass:
“The hard truth is that what may be acceptable in elite culture may not be acceptable in mass culture, that tastes which pose only innocent ethical issues as the property of a minority become corrupting when they become more established. Taste is context, and the context has changed.”
—Susan Sontag (b. 1933)