Prime Ideal

In algebra (which is a branch of mathematics), a prime ideal is a subset of a ring which shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number or zero.

Primitive ideals are prime, and prime ideals are both primary and semiprime.

Read more about Prime Ideal:  Prime Ideals For Commutative Rings, Prime Ideals For Noncommutative Rings, Important Facts, Connection To Maximality

Famous quotes containing the words prime and/or ideal:

    What was lost in the European cataclysm was not only the Jewish past—the whole life of a civilization—but also a major share of the Jewish future.... [ellipsis in source] It was not only the intellect of a people in its prime that was excised, but the treasure of a people in its potential.
    Cynthia Ozick (b. 1928)

    I’m no idealist to believe firmly in the integrity of our courts and in the jury system—that is no ideal to me, it is a living, working reality. Gentlemen, a court is no better than each man of you sitting before me on this jury. A court is only as sound as its jury, and a jury is only as sound as the men who make it up.
    Harper Lee (b. 1926)